
Pattern Recognition 141 (2023) 109624 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Tensor completion via convolutional sparse coding with small 

samples-based training 

Tianchi Liao 

a , Zhebin Wu 

a , Chuan Chen 

a , ∗, Zibin Zheng 

b , Xiongjun Zhang 

c 

a School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510 0 06, China 
b School of Software Engineering, Sun Yat-sen University, Zhuhai 5190 0 0, China 
c School of Mathematics and Statistics and Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan 430079, China 

a r t i c l e i n f o 

Article history: 

Received 19 July 2022 

Revised 26 March 2023 

Accepted 21 April 2023 

Available online 27 April 2023 

Keywords: 

Tensor completion 

Convolutional sparse coding 

High-pass filter 

Inexact ADMM 

a b s t r a c t 

Tensor data often suffer from missing value problems due to the complex high-dimensional structure 

while acquiring them. To complete the missing information, lots of Low-Rank Tensor Completion (LRTC) 

methods have been proposed, most of which depend on the low-rank property of tensor data. In this 

way, the low-rank component of the original data could be recovered roughly. However, the shortcoming 

is that the detailed information can not be fully restored, no matter the Sum of the Nuclear Norm (SNN) 

nor the Tensor Nuclear Norm (TNN) based methods. On the contrary, in the field of signal processing, 

Convolutional Sparse Coding (CSC) can provide a good representation of the high-frequency component of 

the image, which is generally associated with the detail component of the data. To this end, we propose 

two novel methods, LRTC-CSC-I and LRTC-CSC-II, which adopt CSC as a supplementary regularization for 

LRTC to capture the high-frequency components. Therefore, the LRTC-CSC methods can not only solve the 

missing value problem but also recover the details. Moreover, the regularizer CSC can be trained with 

small samples due to the sparsity characteristic. Extensive experiments show the effectiveness of LRTC- 

CSC methods, and quantitative evaluation indicates that the performance of our models are superior to 

state-of-the-art methods. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

A tensor is often known as an extension of a 1D vector or 2D 

atrix, which can offer a high-dimensional storage structure for 

arious data nowadays, such as color images, hyperspectral images, 

ideos, etc. Thus, it’s widely leveraged in the field of computer vi- 

ion, data mining [1] , machine learning [2] , and large-scale data 

nalysis [3] . However, it’s common that the obtained tensor data 

s nevertheless undersampled when processing it, which derives 

any Low-Rank Tensor Completion (LRTC) [4] algorithms to ad- 

ress the missing value problem. The general LRTC algorithm is 

ormulated as: 

in 

X 
rank ( X ) s . t . X � = T �, (1) 

here X is the underlying tensor, T is the original data, � is the 

ndex set which implies the location corresponding to the observed 

ntries. However, it’s intractable to solve problem (1) which is NP- 

ard [5] , due to the combinational nature of the function rank( ·). 
The definition of tensor rank is different from the known ma- 

rix’s, because it is not unique. It depends on the tensor de- 
∗ Corresponding author. 
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omposition method used, e.g., CANDECOMP/PARAFAC (CP), Tucker, 

ensor-Train (TT) etc. The definition of tensor rank, CP rank specif- 

cally, was first proposed by Kruskal et al. [6] . Immediately follow- 

ng, Tucker rank was adopted to approach the LRTC and gained un- 

xpected achievements [4] . However, the drawback of Tucker rank 

s that its components will be the ranks of highly unbalanced flat- 

ened matrices if the original tensor is high dimensional (N > 3). To 

ddress above problem, Bengua [7] proposed a novel LRTC solver 

ased on TT rank. Besides, they employ the Ket Augmentation (KA) 

o extend low dimensional tensors to higher ones and proves that 

T rank is more capable of global information capturing when the 

imension of a tensor is larger than three [8] . Another novel defini- 

ion of tensor rank named tubal rank is based on the recently pro- 

osed t-SVD decomposition [9] , which is able to characterize the 

nherent low-rank structure of a tensor. Actually, no matter what 

ank is exploited to recover corrupted tensors, the core of these 

RTC models is to find the relationship between missing entries 

nd retained ones. 

Despite the tensor rank estimation issue is intractable, nuclear 

orm [10] has been proved to be the most effective convex surro- 

ate for the function rank( ·) of the matrix. Liu et al. [4] proposed

he sum of the nuclear norm (SNN) as a relaxation of the tensor 

ank. 

https://doi.org/10.1016/j.patcog.2023.109624
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109624&domain=pdf
mailto:chenchuan@mail.sysu.edu.cn
https://doi.org/10.1016/j.patcog.2023.109624
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state-of-the-art models in the experiments. 
In addition, the tensor nuclear norm (TNN) [11] is proposed 

rom t-product to keep consistent with the matrix cases on con- 

epts (see details in Section 2.1 ). No matter which nuclear norm is, 

he strong prior of the underlying tensor data is its low-rank prop- 

rty, and then the low-rank component can be recovered based on 

hat. 

Inevitably, the details of observation are overlooked by LRTC 

odels. Thus, lots of regularizations are proposed to be employed 

s another prior [12] to improve the details of recovered data, e.g., 

otal Variation (TV) [13] , framelets [14] , wavelets [15] etc. Among 

hese priors, TV is the most popular one in LRTC problems. Li 

t al. [13] combined TV and low-rankness to recover visual ten- 

ors and proposed a novel LRTC-TV model, where TV accounts for 

ocal piecewise priors. The starting point of LRTC-TV lies on the 

act that the objects or edges in the spatial dimension will hold 

 smooth and piecewise structure. As a complementary prior to 

ow rankness, TV can explore the local features properly. While 

iang et al. [16] combined TNN and an anisotropic TV to propose 

 TNN-3DTV model to exploit the correlations among the spatial 

nd channel domains. The only fly in the ointment is that TV as- 

umes the underlying tensor is piecewise smooth, resulting in un- 

esired patch effects on the recovered tensors [17] . Therefore, Li 

t al. proposes a non-local self-similar completion model that in- 

orporates a non-local prior to enhance the self-similarity of the 

nderlying tensor [18] . What’s more, the regularizations above are 

ll only based on the information within that image, which is fa- 

al when the remaining entries are few. Zhang et al. [19] utilized 

onvolutional Neural Networks (CNN) to train a set of effective de- 

oisers to solving the image denoising problem, which shows the 

mportance of feature collections. Thus, it’s necessary to introduce 

ther prior information outer the image for a better result. 

Another prominent paradigm in signal processing is sparse cod- 

ng. By seeking a sparse representation under an overcomplete dic- 

ionary, the underlying data could be restored exceptionally. The 

undamental of sparse coding is the dictionary learning, a process 

o obtain a dictionary D that can best represent a set of train data.

s early as 2006, Elad et al. [20] leveraged dictionary learning- 

ased method to tackle the image denoising problem. Later in 

010, Yang et al. [21] decided to sparsely code for each patch of 

he low-resolution input and then used the coefficients of learned 

epresentation to generate the high-resolution output. In this way, 

he image super-resolution could be represented by sparse entries. 

For a fixed dictionary D ∈ R 

N×M , given a signal X ∈ R 

N , the task

f seeking its sparsest representation � ∈ R 

M is called sparse cod- 

ng. Mathematically, the sparse coding problem can be formulated 

s: 

in 

�
‖ 

�‖ 0 s . t . D � = X, (2) 

here ‖ �‖ 0 denotes the number of non-zeros in �. There exists a 

onvex relaxation of problem (2) in the form of Basis-Pursuit (BP) 

roblem [22] , formulated as: 

in 

�
‖ 

�‖ 1 s . t . D � = X. (3) 

However, most traditional dictionary learning methods are 

atch-based, which might ignore the consistency among the en- 

ries lied in different patches but have some common features in 

he image. Besides, the learned data will contain shifted versions 

f the same features, resulting in an over-redundant dictionary. 

To tackle the above problems, an alternative model, Convolu- 

ional Sparse Coding (CSC), has gained great attention in machine 

earning for image and video processing [23] recently due to its 

hift-invariance property. In 2010, Zeiler et al. [24] first proposed 

he concept of CSC. To improve the computional effectiveness, 

ristow et al. [25] proposed novel and fast solutions under the Al- 

ernating Direction Method of Multipliers (ADMM) framework in 
2 
uccession. Furthermore, Wohlberg [26] demonstrated that suitable 

enalties on the gradients of the coefficient maps will improve the 

mpulse noise denoising performance. Papyan et al. [27] introduced 

he relationship between CSC and CNN and claimed that CNN can 

e analyzed theoretically via multi-layer CSC. 

In terms of applications, Papyan et al. [23] also proposed a slice- 

ased dictionary learning algorithm, which was utilized in the CSC 

odel to inpaint image as well as separate texture and cartoon. 

ecently, Zhang et al. [28] integrated the concept of low-rankness 

nto CSC and addressed the rain streak removal. The work of Bao 

t al. [29] demonstrated that the CSC is able to process the high- 

requency component of an image. In order to improve the ca- 

acity of the dictionary for learning multi-dimensional data, Bibi 

t al. [30] leveraged high order algebra to allow traditional CSC 

odels encoding tensors. In addition, Xu et al. [31] decomposed 

he tensor dictionary and reconstructed it under the orthogonality- 

onstrained convolutional factorization scheme to reduce computa- 

ion costs. All in all, it can be argued that the success of CSC may

ttribute to the idea, “think globally and work locally”. 

Actually, the regularizations like TV, framelets, and wavelets 

nly play the primary role in a single image, which can be 

reated as forcing a hard physics constraint on underlying data. 

he CNN-based regularization is often trained with thousands of 

ata, which feature collections can explain in statistics. For ex- 

mple, the small CNN “FDNet” used in [32] was first proposed 

n [33] , but it required more than five thousand images to train 

or more than two days. However, in the real world, it’s not al- 

ays available to acquire such a large amount of samples in a 

imited time. Therefore, the following facts motivate us to adopt 

SC as a priori. Firstly, CSC can be valid for capturing and re- 

onstructing high-frequency information, which is mainly reflected 

n the details and textures of images for image data. Secondly, 

ue to the convenience of CSC, it can be trained with small sam- 

les (in this work we employed only 10 samples for training) 

nd can extract the optimal representation dictionary in a lim- 

ted training set, in which the CNN-based regularizations might be 

nder-fitting. 

Inspired by the capacity of CSC on extracting features locally 

ith an overcomplete dictionary, two novel LRTC-CSC models are 

roposed to address the LRTC problem. By regarding CSC as a plug- 

nd-play submodel in the optimization framework of the whole 

odel, we effectively augment the high-frequency component of 

he underlying tensor. In this way, the global structure is handled 

y LRTC prior, and then CSC is leveraged to introduce external im- 

ges as a priori to assist in preserving image details. Eventually, 

oth global and local features can be well recovered. The main 

ontributions of this paper are: 

1. To tackle the missing value problem, we proposed two CSC 

regularized LRTC models, SNN-based and TNN-based, respec- 

tively. In both models, firstly, an overcomplete dictionary is pre- 

trained only with a minimal amount of data. And then the dic- 

tionary is used in CSC to restore the details of the underlying 

tensor. As a result, both low-rank components and details are 

well recovered. 

2. We came up with effective algorithms to solve the LRTC-CSC-I 

and LRTC-CSC-II models, which are based on the inexact ADMM 

method [34] and plug-and-play framework [32] . With the vari- 

able splitting techniques, the entire problem can be split into 

three subproblems and solved separately. 

3. We tested our model on different kinds of datasets, includ- 

ing color images, MRI data, and videos. Extensive experiments 

have verified the effectiveness of our model and claimed that 

the CSC regularization is suitable for different LRTC models. 

Furthermore, the performance of LRTC-CSC-II is superior to 
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. Notations and preliminaries 

.1. Notations 

Throughout this paper, the ( i 1 i 2 · · · i n ) -th element of a tensor 

 ∈ R 

I 1 ×I 2 ×···×I n is denoted by x i 1 i 2 ···i n .Vectors are denoted by bold- 

ace lowercase letters, e.g. α and scalars by lowercase letters, e.g. 

. We denote an N-order tensor by calligraphic letters, e.g., X ∈ 

 

I 1 ×I 2 ×···×I n , where I k , k = 1 , 2 , · · · , n is the dimension of k -th mode

nd R is the field of real number. Let the upper case latters, e.g., 

, denote the matrices. Especially, a mode- k matricization (also 

nown as mode-k unfolding or flattening) of a tensor X is reshap- 

ng the tensor into a matrix X (k ) ∈ R 

I k ×(I 1 ···I k −1 I k +1 ···I n ) , which is de- 

ned as Tucker rank. For a 3-order tensor X ∈ R 

n 1 ×n 2 ×n 3 , we de-

ote its (i, j) -th mode-1, mode-2, and mode-3 fibers as X (: , i, j) ,

 (i, : , j) , and X (i, j, :) . We use the Matlab notation X (i, : , :) , X (:

 i, :) , and X (: , : , i ) to denote the i -th horizontal, lateral and frontal

lices, respectively. More often, X (i ) and tube are used to represent 

 (: , : , i ) and mode-3 fiber, respectively. 

In addition, there are some mathematical operations of matri- 

es and tensors used in this paper. The inner product of X ∈ R 

n ×m 

nd Y ∈ R 

n ×m is defined as 〈 X, Y 〉 = tr(X H Y ) , where X H is the con-

ugate transpose of the matrix X and tr(·) is matrix trace. The l 1 - 

orm is defined as ‖X ‖ 1 = 

∑ 

i 1 i 2 ···i n | x i 1 i 2 ···i n | , the Frobenius norm

s ‖X ‖ F = 

√ ∑ 

i 1 i 2 ···i n (x i 1 i 2 ···i n ) 
2 and the nuclear norm of matrix as 

 X‖ ∗ = 

∑ 

i σi , where σi is the i -th largest singular value of ma-

rix X . For a vector α, the l 2 -norm is ‖ α‖ 2 = 

√ ∑ 

i α
2 
i 

. For a tensor

 ∈ R 

n 1 ×n 2 ×n 3 , we use ˆ X to denote the result of discrete Fourier 

ransformation of X along the 3-rd dimension, i.e., ˆ X = fft (X , [] , 3) .

ontrarily, we can compute X from 

ˆ X using the inverse FFT, i.e., 

 = ifft ( ˆ X , [] , 3) . 

The work [35] give the first definition of the block circulation 

peration for a tensor X ∈ R 

n 1 ×n 2 ×n 3 : 

circ (X ) := 

⎡ 

⎢ ⎢ ⎣ 

X 

(1) X 

(n 3 ) · · · X 

(2) 

X 

(2) X 

(1) · · · X 

(3) 

. . . 
. . . 

. . . 
. . . 

X 

(n 3 ) X 

(n 3 −1) · · · X 

(1) 

⎤ 

⎥ ⎥ ⎦ 

∈ R 

n 1 n 3 ×n 2 n 3 . 

he block diagonalization matrix of X is defined as 

diag (X ) := 

⎡ 

⎢ ⎢ ⎣ 

X 

(1) 

X 

(2) 

. . . 

X 

(n 3 ) 

⎤ 

⎥ ⎥ ⎦ 

∈ R 

n 1 n 3 ×n 2 n 3 . 

he block circulant matrix can be block diagonalized, i.e., 

diag ( ˆ X ) = (F n 3 � I n 1 ) · bcirc (X ) · (F H n 3 
� I n 2 ) , 

here F n 3 ∈ C 

n 3 ×n 3 is the discrete Fourier transformation matrix, 

 n ∈ R 

n ×n is an identity matrix, � denotes the Kronecker product. 

e also define the following operator 

vec (X ) = 

⎡ 

⎢ ⎢ ⎣ 

X 

(1) 

X 

(2) 

. . . 

X 

(n 3 ) 

⎤ 

⎥ ⎥ ⎦ 

, bvfold ( bvec (X )) = X . 

.2. Tensor preliminaries 

efinition 1 (Tucker Decomposition and Tucker Rank) . [5] The 

ucker decomposition is a form of higher-order PCA. It decomposes 

he tensor into a core tensor multiplied by a matrix along each 
3 
ode. Given a tensor X ∈ R 

I×J×K , it can be decomposed as: 

 ≈ G ×1 A ×2 B ×3 C = 

P ∑ 

p=1 

Q ∑ 

q =1 

R ∑ 

r=1 

g pqr a p ◦ b q ◦ c r , 

here ”×n ” denotes mode-n product, ”◦” denotes the outer prod- 

ct, A ∈ R 

I×P , B ∈ R 

J×Q , C ∈ R 

K×R are factor matrices and G ∈
 

P×Q×R is the core tensor. 

A Tucker rank (also known as n-rank) of an N-order tensor 

s defined the rank of unfolding matrix along each mode, r = 

r 1 , r 2 , . . . , r N ) , where r n , n = 1 , 2 , . . . , N, denotes the rank of X (n ) . 

efinition 2 (Sum of Nuclear Norm (SNN)) . [4] For an N-order ten- 

or X ∈ R 

I 1 ×I 2 ×···×I n , the definition of tensor SNN is the weighted 

verage of the nuclear norm of all matrices unfolded along each 

ode. Mathematically, it can be formulated as: 

 

X ‖ ∗s 
:= 

N ∑ 

i =1 

αi 

∥∥X (i ) 

∥∥
∗, 

here αi denotes the weight of matrix unfolded along i -th mode. 

efinition 3 (t-product) . [35] The t-product between two 3-order 

ensors X ∈ R 

n 1 ×n 2 ×n 3 and Y ∈ R 

n 2 ×n 4 ×n 3 is defined as: 

 = X ∗ Y := bvfold ( bcirc( X ) bvec ( Y)) . 

sing the above property, the t-product can be written as: 

ˆ 
 = bvfold ( bdiag ( ˆ X ) bvec ( ̂  Y )) , 

efinition 4 (Other Special Tensor) . [35] The identity tensor I ∈ 

 

n ×n ×n 3 is the tensor whose first frontal slice is the n × n iden- 

ity matrix, and other frontal slices are all zeros. The orthogonal 

ensor Q ∈ R 

n ×n ×n 3 is satisfies Q ∗ Q 

T = Q 

T ∗ Q = I . A tensor X is

alled f-diagonal if each frontal slice X 

(i ) is a diagonal matrix. 

heorem 1 (t-SVD) . [35] Let X ∈ R 

n 1 ×n 2 ×n 3 . Then it can be factored

s 

 = U ∗ S ∗ V H , 

here U ∈ R 

n 1 ×n 1 ×n 3 , V ∈ R 

n 2 ×n 2 ×n 3 are orthogonal, and S ∈ 

 

n 1 ×n 2 ×n 3 is an f-diagonal tensor. The t-SVD based on t-product, 

hich can be efficiently obtained by computing a series of matrix 

VDs in the Fourier domain. 

efinition 5 (Tensor Tubal Rank) . [11] The tensor tubal rank de- 

oted as rank t (X ) , is defined as the number of non-zero tubes of

, where S is from the t-SVD of X = U ∗ S ∗ V H , that is 

ank t (A ) = # { i : S(i, : , :) 	 = 0 } . 
efinition 6 (Tensor Nuclear Norm (TNN)) . [11] Let X ∈ R 

n 1 ×n 2 ×n 3 , 

he definition of tensor TNN is the sum of singular values of all the 

rontal slices of ˆ X , it can be formulated as: 

 

X ‖ ∗t 
:= 

n 3 ∑ 

i =1 

‖ ̂

 X 

(i ) ‖ ∗. 

.3. Convolutional sparse coding 

Unlike the traditional sparse coding model, CSC replaces the 

eneral linear representation with a sum of convolutions between 

 set of filters d i (the set also known as a dictionary) and its corre- 

ponding feature maps �i [26] . Besides, the patch-based dictionary 

estores the same information in the image several times, while 

SC integrates these information only once. One assumes that an 

ignal X ∈ R 

N admits a decomposition as X = 

∑ m 

i =1 d i ∗ �i , where 

 i ∈ R 

n denotes the filters, �i ∈ R 

N is the feature map correspond- 

ng to d , � is the trade-off parameter and ∗ is the convolution 
i 
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Fig. 1. Flowchart of LRTC-CSC models for low-rank tensor completion. The first step is to generate an initial tensor according to observations. Then a low-pass filter is utilized 

to divide the initial tensor into two components, a high-frequency and a low-frequency one. Next, the high-frequency component is processed by CSC model, in which the 

dictionary D (shown in the format of convolutional matrix) is pre-trained by a small-sample dataset. The stripe dictionary �, which is of size n × (2 n − 1) m , is obtained by 

extracting the i -th patch from the global convolutional dictionary D. The stripe vector �i , which is the corresponding sparse respresent, contains all coefficients of atoms 

contributing to v ec(X (k ) ) i . At last, by merging the improved high-frequency component and the original low-frequency one, the final result is reconstructed. 
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perator. The most univesal form of CSC is Convolutional Basis Pur- 

uit DeNoising (CBPDN), formulated as: 

rg min 

�i 

1 

2 

∥∥∥∥∥
m ∑ 

i =1 

d i ∗ �i − X 

∥∥∥∥∥
2 

2 

+ �
m ∑ 

i =1 

‖ 

�i ‖ 1 . (4) 

n contrast to linear representation, convolutional dictionary can 

cquire shift-invariant features, which improves the efficiency of 

he model. 

To facilitate understanding, we show the process of CSC calcu- 

ation in Fig. 1 . Following Fig. 1 the above can be written in ma-

rix form as X = 

∑ m 

i =1 d i ∗ �i = D �, where D ∈ R 

N ×N m is a banded

onvolutional dictionary, � ∈ R 

Nm is a global sparse representa- 

ion. Define R i ∈ R 

n ×N as the operator that extracts the i -th n -

imensional patch from X , from in the graph, we denote by (·) i , 
.e., R i X = X i . Therefore a patch X obtained from the global signal

s equal to ��i , where � ∈ R 

n ×(2 n −1) m is a strip dictionary and 

i ∈ R 

(2 n −1) m is a strip vector. 

. The proposed model and algorithm 

It’s imperfect for LRTC models that they can only recover the 

ow-rank component of underlying tensors. In the meanwhile, lots 

f details are ignored, which derives many composite algorithms 

ith extra priors emerged to improve the missing details. These 

etails often represent the local features or high-frequency com- 

onent of an image. Previous studies about TV regularization have 

hown its over-patch (over-smooth) effects. To obtain better details 

hen recovering underlying tensors, CSC is introduced to improve 

he high-frequency component of the underlying data. It’s known 
4

hat the high-frequency component often contains specific detailed 

nformation against the low-frequency one. Thus, it’s a feasible 

hoice to improve the high-frequency component solely. By using 

 pre-trained convolutional dictionary, the corresponding feature 

aps can be iteratively calculated to approximate the incomplete 

igh-frequency component of tensor data, which is produced by 

RTC models. Due to the overcompleteness of the dictionary, the 

onvolution results of obtained feature maps and dictionary would 

e an improved version of the previous high-frequency component. 

n this section, we propose to incorporate CSC for different LRTC 

ethods to verify the effectiveness of CSC regularization. Since the 

ow-rank prior of LRTC can be approximated by SNN and TNN, two 

RTC-CSC compound methods are developed. 

ethod LRTC-CSC-I 

As the tratidional typical low-rank approximation method, SNN 

as gained unexpected achievements in LRTC problems. Even 

hough, its promise is limited by the tensor mode- n flattening op- 

rator, which breaks the global structure of the whole tensor. To 

mprove the performance of SNN-based model, we consider to im- 

ose a CSC regularization onto the detail component of underlying 

ensor, mathematically formulated as: 

rg min X 
∑ N 

k =1 αk 

∥∥X (k ) 

∥∥
∗s 

+ λ�(X ) s . t . X � = T �, (5) 

here �(X ) denotes the regularization item, i.e. CSC, and λ is a 

rade-off parameter. 
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The constraint condition X � = T � can be rewritten as a func- 

ion like: 

in P (X ) = 

{
0 , if X � = T �, 

∞ , otherwise . 
(6) 

By introducing auxiliary variables { F k } N k =1 
to disentangle the 

elationship between { X (k ) } N k =1 
and Z = X , the augmented La- 

rangian function of (5) can be formulated as: 

 = 

N ∑ 

k =1 

(αk ‖ 

F k ‖ ∗s 
+ 

β1 

2 

∥∥F k − X (k ) 

∥∥2 

F 
+ 

〈
W 1 k , F k − X (k ) 

〉
) 

+ 

β2 

2 ‖ 

Z − X ‖ 

2 
F + 〈 W 2 , Z − X 〉 + P (X ) + λ�(Z) , 

(7) 

here the matrix { W 1 k 
} N 

k =1 
and the tensor W 2 are Lagrangian mul- 

ipliers and β1 and β2 are the penalty parameter. 

Under the iterative optimization framework of ADMM [36] , the 

olution process of (7) can be concluded by solving three subprob- 

ems, i.e. [ F , Z], X , W 1 and W 2 . 

.1. Solving [ F , Z]-subproblem 

In this part, we are going to solve the [ F , Z]-subproblem sepa-

ately, since they are decoupled. 

1) By fixing X and Z , rewrite the function of F -subproblem: 

rg min 

F k 

N ∑ 

k =1 

( 

αk ‖ F k ‖ ∗ + 

β1 

2 

∥∥∥∥F k − X ( k ) + 

W 1 k 

β1 

∥∥∥∥
2 

F 

) 

. (8) 

or each auxiliary variable F k in { F k } N k =1 
, the iterative closed-form 

olution of (8) is: 

 

i +1 
k 

= D τk 
(X 

i 
(k ) −

W 

i 
1 k 

β1 

) = U�τk 
V 

T , (9) 

here τk = 

αk 
β1 

, and i is the number of updates. The opera- 

or D τ (X ) denotes the thresholding singular value decomposi- 

ion (SVD), which is defined as D τ (X ) = U�τV T [4] , where �τ =
iag ( max (σi − τ, 0)) , the σi is the i -th largest singular value of ma-

rix X , and diag (·) denotes a diagnal matrix. 

2) By fixing X and F , the Z-subproblem is: 

rg min Z 
β2 

2 

∥∥Z − (X − W 2 

β2 
) 
∥∥2 

F 
+ λ�(Z) . (10) 

ctually as the plug-and-play framework suggested in [32] , the 

roblem (10) can be regarded as a new denoising problem. �(Z) 

easures the degree of noise in Z , the smaller, the better. By treat- 

ng “ X − ω 2 
β2 

” as a noisy image and “Z” as a clean image, CSC 

odel becomes the denoiser to solve Z-subproblem and outputs 

 clean image for comparison. Thus, we use the noise image “

 − ω 2 
β2 

” to be the input of CSC model, which can be explicitly 

ormulated as: 

rg min M i 

1 
2 

∥∥∥∥ K ∑ 

i =1 

d i ∗ M i − U 

∥∥∥∥
2 

F 

+ �
K ∑ 

i =1 

‖ 

M i ‖ 1 , (11) 

here U = X − ω 2 
β2 

, � is the hyper-parameter, and K is the number 

f filters. Note that U is a 3-rd tensor while d i , M i are matrices. To

eep consistency, U is cut into three frontal slices for three differ- 

nt color channels in color images, repectively. And the following 

perations are completed at the level of matrices. 

The dictionary learning algorithm is based on ADMM consen- 

us dictionary update [26] , which learns the dictionary from the 

igh-frequency components of the input image. Thus, we obtain 

he component after subtracting a low-frequency computed by 

ikhonov regularization [37] from the image. That is, only the 

igh-frequency component of U is processed by CSC [29] , thus, we 

se a low-pass filter to acquire the high-frequency component of 

and in the rest of this section, U represents its high-frequency 
5 
omponent. At last, the underlying result can be obtained by sum- 

ing the low-frequency component and recovered high-frequency 

omponent. 

Because the inaccurate filters will lead to producing new ar- 

ifacts or structure loss problems, an extra gradient constraint is 

dopted to suppress the outliers based on the original CSC model. 

hat’s more, as suggested in [26] , the gradient constraint on the 

eature maps is superior to applying that on the image domain. 

hus, we further utilize problem (11) with gradient constraint on 

he feature maps, and it can be explicitly formulated as: 

rg min M i 

1 
2 

∥∥∥∥ K ∑ 

i =1 

d i ∗ M i − U 

∥∥∥∥
2 

F 

+ �
K ∑ 

i =1 

‖ 

M i ‖ 1 

+ 

τ
2 

K ∑ 

i =1 

( ‖ 

g 0 ∗ M i ‖ 

2 
F + ‖ 

g 1 ∗ M i ‖ 

2 
F ) , 

(12) 

here g 0 and g 1 are the filters that compute the gradients along 

mage rows and columns respectively, and τ is the hyperparam- 

ter. By introducing linear operators G j M i = g j ∗ M i , the gradient 

onstraint term of (12) can be rewritten as: 

τ

2 

K ∑ 

i =1 

(‖ 

G 0 M i ‖ 

2 
F + ‖ 

G 1 M i ‖ 

2 
F 

)
. (13) 

Further more, considering the conception of block matrix, 

13) can be simplified as: 

τ

2 

‖ 

0 M ‖ 

2 
F + 

τ

2 

‖ 

1 M ‖ 

2 
F , (14) 

here 

j = 

⎛ 

⎝ 

G j 0 · · ·
0 G j · · ·
. . . 

. . . 
. . . 

⎞ 

⎠ , (15) 

nd M = (M 1 M 2 · · · M K ) 
T . 

Let D i M i = d i ∗ M i , D = (D 1 D 2 · · · D K ) , the augmented Lagrangian

unction of (12) is: 

 2 = 

1 
2 ‖ 

DM − U ‖ 

2 
F + �‖ 

B ‖ 1 + 〈 �, M − B 〉 
+ 

ρ
2 ‖ 

M − B ‖ 

2 
F + 

τ
2 ‖ 

0 M ‖ 

2 
F + 

τ
2 ‖ 

1 M ‖ 

2 
F , 

(16) 

here B is introduced as an auxiliary variables satisfying B = M , 

is the Lagrangian multiplier and ρ is the penalty parameter. 

According to the inexact ADMM framework [34] , the problem 

16) can be solved by solving a sequence of subproblems. 

1) Rewrite the M -subproblem: 

rg min M 

1 
2 ‖ 

DM − U ‖ 

2 
F + 

ρ
2 ‖ 

M − B + C ‖ 

2 
F 

+ 

τ
2 ‖ 

0 M ‖ 

2 
F + 

τ
2 ‖ 

1 M ‖ 

2 
F , 

(17) 

here C denotes the parameter item C = 

�
ρ . Considering that the 

erivative of the convolution operation is difficult to obtain in 

pace domain, we transform (17) to the Fourier domain and it can 

e formulated as: 

rg min ˆ M 

1 
2 

∥∥ ˆ D 

ˆ M − ˆ U 

∥∥2 

F 
+ 

ρ
2 

∥∥ ˆ M − ˆ B + 

ˆ C 
∥∥2 

F 

+ 

τ
2 

∥∥ ˆ 0 ˆ M 

∥∥2 

F 
+ 

τ
2 

∥∥ ˆ 1 ˆ M 

∥∥2 

F 
, 

(18) 

here ˆ D , ˆ M , ˆ U , ˆ B , ˆ C , ˆ 0 and 

ˆ 1 denotes the corresponding ex- 

ressions in the Fourier domain. A closed-form solution of (18) is: 

(
ˆ D 

H ˆ D + ρI + τ ˆ H 
0 

ˆ 0 + τ ˆ H 
1 

ˆ 1 

)
ˆ M 

j+1 = 

ˆ D 

H ˆ U + ρ
(

ˆ B 

j − ˆ C j 
)
, 

(19) 

hich can be solved by iterated application of the Sherman- 

orrison formula [38] . The superscript j indicates the number of 
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Algorithm 1 LRTC-CSC-I algorithm. 

Input : index set �, original data T , filters set D 

Parameters : �, λ, ρ, τ, αk , W 1 k 
, W 2 , β1 , β2 , ε

Initialization : X 

0 
�

= T �, X 

0 
�̄

= mean ( T ) 
repeat 

F-subproblem 

Update F i +1 
k 

by (9) 

Z-subproblem 

for j = 1 to MaxIter do 

Update M 

j+1 by (20) 

Update B 

j+1 by (22) 

Update C j+1 by (23) 

end for 

Update Z 

i +1 by (24) 

X -subproblem 

Update X 

i +1 by (26) 

W 1 k 
, W 2 -subproblem 

Update W 

i +1 
1 k 

by (27) 

Update M 

i +1 
2 

by (28) 

until Reach convergence ‖ X − T ‖ F / ‖T ‖ F < ε

Output :The recovered tensor X 
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pdates. After obtaining ˆ M , the corresponding M in spatial do- 

ain can be calcaulated by: 

 

j+1 = ifft ( ˆ M 

j+1 ) , (20) 

here ifft (·) denotes the inverse Fourier transform. 

2) Rewrite the B-subproblem: 

rg min 

B 
�‖ 

B ‖ 1 + 

ρ
2 ‖ 

M − B + C ‖ 

2 
F . (21) 

y using soft-thresholding algorithm, the closed-form solution of 

21) can be obtained as: 

 

j+1 = S �/ρ(M 

j+1 + C j ) . (22) 

here S l (·) denotes the soft-thresholding function, which can be 

alculated as: S l ( x ) = sign (x ) max (0 , | x | − l) . 

3) Update C by fixing M and B: 

 

j+1 = C j + �
(
M 

j+1 − B 

j+1 
)
. (23) 

At last, the outputing high-frequency component of Z can be 

alculated by: 

 

i +1 = DM 

∗, (24) 

here M 

∗ is the optimal solution of M . And after adding the low-

requency component of U , an entire solution Z is obtained. 

.2. Solving X -subproblem 

By fixing F and Z , the X -subproblem can be simplified and 

ewritten as: 

rg min X 
N ∑ 

k =1 

β1 

2 

∥∥∥F k − X (k ) + 

W 1 k 

β1 

∥∥∥2 

F 
+ P (X ) 

+ 

β2 

2 

∥∥Z − X + 

W 2 

β2 

∥∥2 

F 
. 

(25) 

he closed-form solution of (25) can be obtained by: 

 

i +1 = 

⎛ 

⎜ ⎝ 

β1 

β1 + β2 

∑ N 
k =1 fold 

( 

F i +1 
k 

+ 
W i 

1 k 
β1 

) 

N 
+ 

β2 

β1 + β2 

(
Z 

i +1 + 

W 

i 
2 

β2 

)⎞ 

⎟ ⎠ 

�

+ T (26) 

here �̄ is the complement set of �. 

.3. Solving [ W 1 k 
, W 2 ]-subproblem 

By fixing X and F , X and Z , we can update the Lagrangian mul-

iplier W 

i +1 
1 

and W 

i +1 
2 

, respectively. 

For each value W 1 k 
in the multiplier { W 1 k 

} N 
k =1 

: 

 

i +1 
1 k 

= W 

i 
1 k 

+ β1 

(
F i +1 

k 
− X 

i +1 
(k ) 

)
, (27) 

nd 

 

i +1 
2 = W 

i 
2 + β2 

(
Z 

i +1 − X 

i +1 
)
. (28) 

The overall pseudocode of LRTC-CSC-I algorithm is summarized 

n Algorithm 1 . Actually, our model can degenerate to LRTC-SNN 

odel [4] by setting the hyperparameter λ = 0 . 

ethod LRTC-CSC-II 

Similar to method I, we use the TNN to approximate the low- 

ank prior of tensor, instead. The LRTC-CSC-II model is mathemati- 

ally formulated as: 

rg min X 
n 3 ∑ 

k =1 

‖ ̂

 X 

(k ) ‖ ∗t 
+ λ�(X ) s . t . X � = T �. (29) 
6

The constraint condition can be rewritten as (6) . By introducing 

uxiliary variables F = X and Z = X , the augmented Lagrangian 

unction of (29) can be formulated as: 

 = 

∑ n 3 
k =1 

(
‖ ̂

 F ( k ) ‖ ∗t 
+ 

β1 

2 
‖ F ( k ) − X 

( k ) ‖ 

2 
F + 〈 W 

( k ) 
1 

, F ( k ) − X 

( k ) 〉 
)

+ 

β2 

2 
‖Z − X ‖ 

2 
F + 〈W 2 , Z − X 〉 + P ( X ) + λ�( Z ) . (30) 

here X (k ) is used to represent X (: , : , k ) and the tensor W 1 and

 2 are Lagrangian multipliers and β1 and β2 are the penalty pa- 

ameter. 

Note that Eq. (30) is different from Eq. (7) . For a 3-order 

ensor X ∈ R 

I 1 ×I 2 ×I 3 . The SNN is done for each mode of the ten-

or, i.e., 
∑ N 

k =1 

∥∥X (k ) 

∥∥
∗ here N = 3 , and X (k ) ∈ R 

I k ×
∏ 3 

i 	 = k I i . The TNN is

one for each frontal slice of the tensor, i.e., 
∑ I 3 

k =1 
‖ ̂  X (i ) ‖ ∗ here 

 

(k ) ∈ R 

I 1 ×I 2 . 

In order to distinguish the k -th frontal slice and the k -th itera-

ion times of a tensor, we use X (: , : , k ) to denote the k -th frontal

lice and X 

k for the k -th iteration. We divide the problem (30) into

hree subproblems, i.e. [ F , Z], X , W 1 and W 2 , and solve the prob-

em with the same optimization framework of ADMM. For the 

ake of brevity, we describe how to solve the LRTC-CSC-II model 

n Appendix A . Actually, our model can degenerate to LRTC-TNN 

odel [11] by setting the hyperparameter λ = 0 . 

. Numerical experiments 

In this section, we verified our LRTC-CSC models with popular 

olor image datasets, such as Peppers, Lena, Starfish and so on. Be- 

ides, MRI data and video are also leveraged to our benchmark, 

hich shows the generalization of LRTC-CSC model. Meanwhile, 

everal state-of-the-art LRTC methods are compared in different 

ituations: 

1. LRTC-SNN(SNN) [4] : It adopted SNN to approximate the low- 

rank prior of underlying tensors without any regularizations in 

the objective function. 

2. LRTC-TNN(TNN) [11] : It used TNN to describe the low-rank 

prior of underlying tensors without any regularizations in the 

objective function. 

3. LRTC-T V(T V) [13] : It combined the Tucker rank-based SNN fi- 

delity item and TV regularization to approximate the global 

low-rank structure and local smoothness, respectively. 
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Fig. 2. The 10 fruit images for training. 
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4. TNN-3DTV(3DTV) [16] : It combined TNN and anisotopic TV reg- 

ularization, inorder to extract the intrinsic structures of visual 

data and exploit the local smooth and piecewise priors, simul- 

taneously. 

5. MF-Framelet(Fram) [14] : It leveraged matrix factorization-based 

SNN to capture the global structure of underlying tensor with 

the Framelet regularization. 

6. Framelet-T V(FT V) [39] : It combined the TT rank-based SNN and 

the hybrid regularization of Framelet and TV, aiming at char- 

acterizing the global TT low-rankness, capturing the abundant 

details and enhancing the temporal smoothness of the tensor, 

respectively. 

7. TNN-DCT(DCT) [40] : It is inspired by the invertible linear trans- 

forms based tensor-tensor product, which extends the tradi- 

tional TNN to a more general format. Different from LRTC-TNN, 

the Discrete Fourier Transform is replaced by Discrete Cosine 

Transform. 

8. WTNNDL(DL) [41] : It employed a weighted TNN of the tensor 

to approximate the global structure of the data and uses sparse 

coding to elucidate the local patterns of the data. 

9. LRSSRTC(SSR) [42] : It integrated SNN-based low-rank tensor 

completion and sparse self-representation into a unified frame- 

work and proposes a new completion model. 

To measure the recovering performance of various models, both 

he Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity In- 

ex (SSIM) are used. In consideration of the multiband structure of 

ensor data, we adopt the mean value of all bands as the evalua- 

ion metric. 

All experiments are performed in MATLAB R2020a in Linux 

ith an Inter(R) Core(TM) i7-9800X CPU at 3.80 GHz and 64GB 

AM. To accelerate the running speed, we performed the CSC 

hase with a graphics processing unit (GPU) GeForce RTX 2080 Ti. 

.1. Pre-training CSC 

The convolutional filters are pre-trained with the popular fruit 

ataset [24] in color image experiments as shown in Fig. 2 . To 

ake sure the optimal number of filters, we trained several dictio- 

aries of different number of filters with a fruit dataset. And then 

hese dictionaries were used to our benchmark for the sampling 

ate 20%. The experimental results are shown in Fig. 3 . The best 

erformance corresponds to the best number of filters. All the re- 

ults in the left figure of Fig. 3 indicated that the proposed model 

ould gain the best performance when a dictionary consists of 32 

lters. Except for the Lena image, the other results in the right fig- 

re of Fig. 3 also show the superiority when the filter number is 

2. Thus, we trained a dictionary of 32 filters with the fruit dataset 

eforehand. These filters are of size 16 × 16 , � = 10 , and τ = 0 . 1 .

t’s worth noting that the computation of convolution is finished 

n the Fourier domain, which can be regarded as dot product, thus 

he size of filters can be even. 

The penalty factor � in Eq. (4) determines how clean the 

earned dictionary is during the pre-traing process. To investigate 

he impact of �, we select � from { 0 . 001 , 0 . 01 , 0 . 1 , 1 , 10 , 100 } to

onduct experiments on the fruit dataset as shown in Fig. 2 . The 

isual results of the learned dictionaries can be found in Fig. 4 . 

hat’s more, Fig. 5 (a) shows the convergence behavior of CSC 
7 
odel on different �s and it’s obvious that almost all the models 

onverge to a optimal point in a normal way except for � = 0 . 001 ,

hich indicates the overfitting phenomenon. Fig. 5 (b) shows the 

erformance of utilizing these dictionaries on color images recov- 

ry experiments. When � = 10 , the model can achieve a highest 

SNR value. 

.2. Color images 

Before the experiments begin, we execute the missing process 

o original images. Specifically, to obtain observed data, all the ele- 

ents in color images will be erased randomly according to a set- 

ing ratio (same in the following MRI and video experiments). 

Fig. 6 shows the recovered results of color images by all com- 

aring models. The first six images are 256 × 256 × 3 in size, 

hile the last two images are 256 × 192 × 3 in size. The de- 

ails are marked out and enlarged in the mark boxes. Comparing 

o the degradation models of the proposed ones, LRTC-SNN and 

RTC-TNN, it’s intuitionistic to show the effect of CSC prior. The 

ramelet-TV method is very competitive to our model LRTC-CSC-I, 

owever, the proposed model holds more clean and smooth details 

ven in an inferior comparison on last two color images. In most 

ituations, LRTC-CSC-I can obtain a higher performance. And the 

esults of LRTC-CSC-II are the most similar to the original images, 

specially. 

The PSNR and SSIM values of recovered results for the 8 color 

mages by different algorithms are shown in Tab. 1 and 2 . One can

ee that the LRTC-TNN method is superior to SNN-based LRTC-SNN 

n the whole. LRTC-TV is very closed to TNN-3DTV on SSIM values 

ut inferior on PSNR values. The DCT method is the improved ver- 

ion of TNN without other regularizations indeed, thus can hardly 

ompete with other composite models. And Framelet-TV method 

olds onto the position of the third place by a comfortable mar- 

in in most situations. Its performance ends up second only to 

he proposed two models. Neither the WTNNDL method nor the 

RSSRTC method performs well on this dataset. WTNNDL uses its 

wn observations for dictionary learning, while our dictionary is 

earned by an external prior, thus we learn wealthier features. Es- 

ecially, the LRTC-CSC models have a larger lead at color images 

imilar to peppers and fruits due to the dictionary trained by a 

ruit dataset, which also shows the importance of the relationship 

etween underlying data and dataset. The results of Framelet-TV 

n the last two images are superior to our CSC-I method, which 

hows the shortcomings of SNN-based methods. The structure fea- 

ures are broken by unfolding tensors into matrices along each 

ode. What’s more, the few relationships between underlying ten- 

ors and dataset exacerbate the issue. Besides, when the missing 

atio is 90%, other algorithms can hardly hold a stable SSIM value 

especially the last three images), LRTC-CSC models are still stand- 

ng at a relatively high level. 

.3. MRI dataset 

In this subsection, an MRI dataset of size 180 × 216 × 30 is 

hosen to test our model. Except for the 30 bands used for the 

est, we select another 10 bands from the data as the dictionary 

raining set. And different from the color image experiments, the 
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Fig. 3. The PSNR and SSIM values of color images recovered by LRTC-CSC-I when different number of filters are used in a dictionary for the sampling rate 20%. 

Fig. 4. The dictionary of 32 filters trained with fruit dataset on different �s. 

Fig. 5. (a) The loss of CSC on different �s. (b) The PSNR values of color images recovered by LRTC-CSC-II on different �s of dictionary for the sampling rate 30%. 

8 
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Fig. 6. The recovered color images by different algorithms for the sampling rate 30% , respectively. From (a) to (m): Original image, Observed image, recovered images by 

SNN, TNN, TV, Framelet(Fram), 3DTV, Framelet-T V(FT V), DCT, WTNNDL(DL), LRSSRTC(SSR), CSC-I and CSC-II, respectively. 

Table 1 

PSNR results of recovered color images by different algorithms. The best and second best values are highlighted in bold and underline, 

respectively. (MR is short for Missing Ratio). 

Image MR PSNR 

SNN TNN TV Fram 3DTV F-TV DCT DL SSR CSC-I CSC-II 

Peppers 

256 × 256 × 3 

70% 24.03 23.54 26.87 22.66 27.45 30.43 25.45 25.81 22.36 30.84 31.72 

80% 20.99 20.50 24.52 21.63 24.82 28.02 22.74 20.99 20.20 28.20 29.33 

90% 16.92 16.75 20.24 18.52 20.61 23.96 19.23 21.81 16.50 23.52 24.08 

Starfish 

256 × 256 × 3 

70% 23.68 24.41 26.18 22.36 27.27 27.88 26.33 27.25 22.90 28.50 29.78 

80% 20.90 21.17 23.55 21.41 24.47 25.18 23.29 24.83 20.81 25.86 26.75 

90% 17.29 17.54 20.19 17.90 20.71 21.15 19.68 21.62 17.28 22.20 22.63 

Lena 

256 × 256 × 3 

70% 25.59 25.86 27.69 22.75 28.72 29.33 27.01 25.95 24.67 30.73 32.03 

80% 22.82 23.03 25.84 21.87 26.26 26.99 24.02 24.41 22.92 28.13 29.00 

90% 19.26 19.47 22.29 20.59 22.80 23.94 20.52 22.17 19.73 24.58 25.34 

Fruits 

256 × 256 × 3 

70% 24.08 24.30 26.81 21.15 27.21 28.52 25.58 25.66 23.39 29.44 30.36 

80% 21.65 21.79 24.89 20.41 25.07 26.43 23.19 23.96 21.47 26.70 27.59 

90% 18.22 18.40 21.69 19.18 21.69 23.54 19.88 21.32 18.12 23.95 24.26 

House 

256 × 256 × 3 

70% 27.30 27.83 28.45 23.09 30.62 31.82 28.98 26.53 24.86 32.26 33.00 

80% 24.22 24.57 26.53 21.81 27.76 29.07 26.31 25.47 23.38 29.81 30.72 

90% 20.60 20.62 22.50 20.53 23.78 25.29 22.36 23.12 20.18 25.62 26.49 

Airplane 

256 × 256 × 3 

70% 25.21 26.30 26.55 21.03 27.68 26.63 26.53 23.17 22.48 28.42 30.05 

80% 22.70 24.07 24.13 20.05 25.27 24.42 24.10 21.78 20.89 26.12 27.37 

90% 19.54 20.92 20.96 18.94 22.02 21.84 21.07 19.65 18.57 22.98 23.92 

Church 

256 × 192 × 3 

70% 24.70 25.45 25.83 22.92 27.04 25.68 28.32 26.59 23.84 27.46 28.68 

80% 22.30 22.84 23.90 21.90 24.81 23.30 26.02 24.79 22.04 25.54 26.49 

90% 18.79 19.33 20.82 20.35 21.69 22.55 20.19 22.04 18.88 22.41 23.21 

Cars 

256 × 192 × 3 

70% 22.76 23.66 24.18 22.60 25.30 27.18 23.98 25.64 21.94 26.31 27.41 

80% 20.15 20.86 21.98 21.23 22.78 24.62 21.63 23.48 19.93 24.07 24.80 

90% 16.84 17.60 18.34 16.24 19.52 21.02 18.53 20.41 16.63 20.76 21.26 

9 
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Table 2 

SSIM results of recovered color images by different algorithms. The best and second best values are highlighted in bold and underline, respectively. 

(MR is short for Missing Ratio). 

Image MR SSIM 

SNN TNN TV Fram 3DTV F-TV DCT DL SSR CSC-I CSC-II 

Peppers 

256 × 256 × 3 

70% 0.9339 0.9233 0.9703 0.9147 0.9687 0.9759 0.9496 0.9713 0.9271 0.9855 0.9865 

80% 0.8827 0.8580 0.9501 0.8963 0.9450 0.9746 0.9132 0.9553 0.8802 0.9734 0.9751 

90% 0.7588 0.7099 0.8906 0.8168 0.8713 0.9362 0.8348 0.9127 0.7539 0.9307 0.9406 

Starfish 

256 × 256 × 3 

70% 0.9074 0.8986 0.9589 0.8873 0.9574 0.9696 0.9527 0.9618 0.9172 0.9705 0.9768 

80% 0.8477 0.8255 0.9272 0.8605 0.9250 0.9504 0.9091 0.9317 0.8721 0.9512 0.9587 

90% 0.7320 0.6801 0.8801 0.7323 0.8482 0.9007 0.8177 0.8718 0.7595 0.9013 0.9074 

Lena 

256 × 256 × 3 

70% 0.9477 0.9460 0.9668 0.9156 0.9722 0.9778 0.9610 0.9652 0.9515 0.9814 0.9853 

80% 0.9128 0.9041 0.9511 0.8992 0.9536 0.9642 0.9296 0.9474 0.9237 0.9687 0.9728 

90% 0.8450 0.8128 0.9102 0.8684 0.9104 0.9376 0.8677 0.9065 0.8645 0.9398 0.9436 

Fruits 

256 × 256 × 3 

70% 0.8747 0.8643 0.9475 0.8328 0.9374 0.9619 0.9162 0.9451 0.8959 0.9645 0.9729 

80% 0.8174 0.7962 0.9213 0.8053 0.9055 0.9409 0.8657 0.9111 0.8428 0.9433 0.9495 

90% 0.7164 0.6575 0.8607 0.7499 0.8294 0.8962 0.7744 0.8392 0.7356 0.8920 0.9014 

House 

256 × 256 × 3 

70% 0.9233 0.9149 0.9562 0.8593 0.9571 0.9713 0.9510 0.9472 0.9275 0.9717 0.9745 

80% 0.8610 0.8406 0.9317 0.8242 0.9244 0.9534 0.9165 0.9262 0.8808 0.9550 0.9601 

90% 0.7276 0.6642 0.8611 0.7658 0.8326 0.9009 0.8152 0.8723 0.7489 0.9062 0.9156 

Airplane 

256 × 256 × 3 

70% 0.6588 0.8859 0.9132 0.6761 0.8104 0.9078 0.8919 0.8632 0.7664 0.9115 0.9458 

80% 0.5407 0.8129 0.8580 0.5971 0.7131 0.8613 0.8178 0.7923 0.6754 0.8630 0.9103 

90% 0.3668 0.6604 0.7458 0.5090 0.5192 0.7610 0.6685 0.6259 0.5034 0.7678 0.8184 

Church 

256 × 192 × 3 

70% 0.8327 0.8485 0.8798 0.7922 0.8933 0.9242 0.8822 0.9182 0.8606 0.9130 0.9313 

80% 0.7367 0.7497 0.8202 0.7491 0.8271 0.8828 0.8044 0.8734 0.7806 0.8693 0.8923 

90% 0.5420 0.5555 0.6959 0.6629 0.6888 0.7835 0.6489 0.7712 0.5956 0.7728 0.7918 

Cars 

256 × 192 × 3 

70% 0.7817 0.8021 0.8664 0.7889 0.8618 0.9154 0.8723 0.9134 0.8248 0.9058 0.9218 

80% 0.6628 0.6780 0.7902 0.7320 0.7717 0.8216 0.7903 0.8627 0.7274 0.8541 0.8672 

90% 0.4378 0.4513 0.6106 0.5411 0.5795 0.7354 0.6240 0.7369 0.5163 0.7309 0.7659 

Fig. 7. The 30-th band of recovered MRI data by all algorithms for different sampling rates. From (a) to (m): Original data, Observed data, recovered data by SNN, TNN, TV, 

Framelet(Fram), 3DTV, Framelet-T V(FT V), DCT, WTNNDL(DL), LRSSRTC(SSR), CSC-I and CSC-II, respectively. From the top down: 10%, 20% and 30% sampling rate. 

d  

i

c

d

T

s

a

s

L

e

fi

m

a

c

B

r

r

p

e

a

P

f

i

m

t

p

f

r

t

f

a

l

4

1

t

A

u

ictionary used in this part is of size 16 × 16 × 30 for working well

n most situations. 

Color images own three channels only, while MRI data often in- 

lude dozen or hundred bands. In this way, the relationship among 

ifferent bands will be closer, which is very advantageous to the 

NN-based method. However, our SNN-based model still shows its 

uperiority after introducing the CSC prior. The same as color im- 

ges, we randomly pick 10%, 20%, and 30% elements as the ob- 

ervations, and the results are shown in Fig. 7 . It’s intuitive that 

RTC-CSC models achieve the best performance among these mod- 

ls, while LRTC-SNN achieves the worst performance, which veri- 

ed the effectiveness of CSC regularization. In particular, LRTC-CSC 

odels work well on detailed recovery compared to TNN-3DTV 

nd Framelet-TV. When the missing rate reaches 90%, our model 

an still hold a relatively clear result. 

Fig. 8 further shows the recovery performance in every band. 

oth the PSNR and SSIM values of each band show the supe- 

iority of LRTC-CSC models. 3DTV and DCT methods have close 

esults. Note that TNN-3DTV can achieve a high SSIM value ap- 

roaching LRTC-CSC. However, there is a gap between them on the 

dge band of the whole MRI data. The proposed model LRTC-CSC-I 
10 
chieves a performance promotion of 4 and 0.05 with respect to 

SNR and SSIM over the results of TNN-3DTV. Moreover, the per- 

ormances of LRTC-TNN and LRTC-CSC-II on edge band are sim- 

lar to TNN-3DTV, which implies the shortcoming of TNN-based 

ethods. In other words, TNN can not handle the edge informa- 

ion due to lacking enough neighbors, which is determined by its 

redominant characteristic of global information capturing. The pe- 

ormance of TT rank-based method is not satisfactory in MRI data 

ecovering experiments because of imposing KA on the unbalanced 

ensor. To our surprise, we found that the WTNNDL method per- 

orms quite closely to our method LRTC-CSC-I on the MRI dataset, 

nd such results further illustrate the effectiveness of dictionary 

earning. 

.4. Videos 

In this subsection, we benchmarked our model on Suzie of size 

44 × 176 × 150 . The same as MRI experiments, we utilize 30 fil- 

ers in a dictionary trained by only 10 frames of the video data. 

nd except for the trained ones, another 30 frames of video are 

sed for recovering task. By randomly selecting 10% elements, the 
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Fig. 8. The PSNR and SSIM values of different bands of MRI data recovered by all algorithms for the sampling rate 30%. 

Fig. 9. The 5-th, 15-th and 25-th frame of recovered suzie video by all algorithms for 10% sampling rates. From (a) to (m): Original data, Observed data, recovered data by 

SNN, TNN, TV, Framelet(Fram), 3DTV, Framelet-T V(FT V), DCT, WTNNDL(DL), LRSSRTC(SSR), CSC-I and CSC-II, respectively. From the top down: 5-th, 15-th and 25-th frame. 

Fig. 10. The PSNR and SSIM values of different frames of video data recovered by all algorithms for the sampling rate 10%. 
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ecovered results are shown in Fig. 9 . It is not hard to see that the

esults recovered by our LRTC-CSC models are the cleanest. Simi- 

ar to MRI data experiment, TNN-3DTV is close to LRTC-CSC-I but it 

an not handle the edge frame well, e.g., the 30-th frame in Fig. 10 .

he performance of the WTNNDL method is degraded compared to 

he MRI data. It can also be observed that the SNN-based Framelet- 

V is inferior to TNN-3DTV, which shows the low-rank approxi- 

ating ability of TNN. 
11 
Fig. 10 shows the recovery results of each frame in detail. Note 

hat LRTC-CSC-II achieves the highest score in both PSNR and SSIM. 

owever, at the beginning or end of the video, only the proposed 

RTC-CSC-I is stable while the index curve of the TNN-based meth- 

ds, including LRTC-CSC-II, drops rapidly, which shows the stability 

f SNN-based methods on edges, again. Compared with LRTC-SNN 

nd LRTC-TNN, the proposed models have claimed the superiority 

f CSC regularization. 
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Table 3 

Complexity analysis. 

Norm calculation CSC regularization 

SNN: O( 
∑ 3 

n =1 ( ( I n ) 
2 ( 

∏ 3 
i 	 = n I i ) + ( 

∏ 3 
i 	 = n I i ) 

3 )) Fourier transforms Softthresholding 

TNN: O(I 1 I 2 I 3 log (I 3 ) + I (1) I 
2 
(2) 

I 3 ) O(KDlog(D )) O(KD ) 

Fig. 11. The convergence behavior with respect to iterations on the color images at MR = 70% . The figures show the convergence of CSC-I (a) and CSC-II (b) algorithms for 

RE and PSNR, respectively. 

Fig. 12. The PSNR and SSIM values of color images recovered by CSC-II on different λ and τ values for the sampling rate 30%. 
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.5. Analysis 

.5.1. Complexity analysis 

Here, we briefly analyze the complexity of our methods. in this 

ork the main cost of our approach depends on two parts: train- 

ng filters and reconstruction. Training filters for CSC using small 

amples is hardly time consuming. In the reconstruction process, 

e employ ADMM to solve the optimization problem. It is easy to 

ee that the main cost of each iteration lies in the computation 

rocess of the norm and the part of CSC regularization. 

For a third-order tensor, X ∈ R 

I 1 ×I 2 ×I 3 . We define I (1) = 

ax (I 1 , I 2 ) and I (2) = min (I 1 , I 2 ) . The calculation complexity of

NN and TNN lies in the Fourier transformation of the matrix 

nd singular value decomposition. Therefore, according to the def- 

nition of the two norms, the calculation complexity of SNN is 

( 
∑ 3 

n =1 ( ( I n ) 
2 ( 

∏ 3 
i 	 = n I i ) + ( 

∏ 3 
i 	 = n I i ) 

3 )) , and the calculation complex-

ty of TNN is O(I 1 I 2 I 3 log (I 3 ) + I (1) I 
2 
(2) 

I 3 ) . Whereas, the computation

omplexity of CSC regularization is O(KDlog(D ) + KD ) , including 

ourier transformation and soft threshold calculation, where K is 

he number of filters and D is the number of samples of a single

mage. We summarize the above description in Table 3 . 

Although our method has a computational burden, several tech- 

iques including parallel computing and advanced optimization 

ethods can be used to speed up. 

.5.2. Convergency analysis 

Recent studies about inexact ADMM show the convergence be- 

avior on different models [34] , and we also verify it in our ex- 

eriments. The numerical experiments have shown the remark- 

ble performance of CSC-I and CSC-II. In order to demonstrate the 
12 
onvergence of algorithms in numerical, Fig. 11 shows the vari- 

tion curves of the Relative Error (RE) values, i.e., RE = 

‖ X−T ‖ F ‖T ‖ F , 

nd PSNR values of CSC-I and CSC-II algorithms with the number 

f iterations on three color images of Lena, Peppers and Fruits at 

R = 70% . Our algorithm satisfies the stopping condition when the 

aximum number of iterations is reached or when RE is less than 

( ε = 1 e − 5 in the experiment). Since our method belongs to the 

on-convex optimization issue, the curve can be observed to be- 

ome smooth sharply after a short period of fluctuation. Intuitively, 

he numerical convergence is stable after 100 iterations, with the 

elative change approaching zero when 200 iterations are reached. 

.6. Parameters analysis 

.6.1. Effect of λ
To investigate the robustness of the regularization coefficients 

, grid search or cross-validation can be considered to search the 

arameters. We conducted color image experiments for different 

alues of λ, and the results are shown in Fig. 12 (a). Initially, the 

SNR and SSIM values grow as λ increases, which demonstrates 

he importance of regularization. As λ continues to rise, the eval- 

ated values decrease only slightly. Therefore, we consider the pa- 

ameter λ is robust within the common-setting range { 0 . 1 ∼ 10 } . 

.6.2. Effect of τ
The extra gradient term in (12) can improve the performance of 

ur models which is suggested in [26] , and we verified that in our 

xperiments. To investigate the sensitivily of τ in gradient item, we 

lso perform our model on color images for various τ values. The 
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Algorithm 2 LRTC-CSC-II algorithm. 

Input : index set �, original data T , filters set DParameters : 

�, λ, ρ, τ, αk , ω 1 , ω 2 , β1 , β2 , εInitialization : X 

0 
�

= T �, X 

0 
�̄

= 

mean ( T ) , 
repeat 

F-subproblem 

Update F 

i +1 by (A.4) 

Z-subproblem 

for j = 1 to MaxIter do 

Update M 

j+1 by (20) 

Update B 

j+1 by (22) 

Update C j+1 by (23) 

end for 

Update Z 

i +1 by (24) 

X -subproblem 

Update X 

i +1 by (A.6) 

[ W 1 , W 2 ]-subproblem 

Update W 

i +1 
1 

by (A.7) 

Update W 

i +1 
2 

by (A.8) 

until Reach convergence ‖ X − T ‖ F / ‖T ‖ F < ε

Output :The recovered tensor X 

S

r

a

T

F

w

F

F

a

w

s

t

S

r

a

T

X

w

esults are shown in Fig. 12 (b). When τ = 0 , our algorithms degen-

rate to the version without the gradient regularization, and the 

unction of this regularization term is fully reflected in the com- 

arison with the original model. The performance achieves peak 

hen τ = 0 . 1 in most situations, thus, we set τ = 0 . 1 in this pa-

er. 

. Conclusion 

Inspired by the capacity of CSC on high-frequency component 

rocessing, we introduced CSC into the traditional LRTC model. In 

his way, the details of the underlying tensor would be improved 

n addition to the low-rank component recovery. Compared to 

ther plug-and-play CNN prior to using thousands of samples, our 

ethod can achieve good performance with only small samples. 

or the proposed models, we obtain effective algorithms based on 

he inexact ADMM method. And the effectiveness of LRTC-CSC-I 

nd LRTC-CSC-II have been verified in color images, MRI data, and 

ideo data recovery experiments. There are still some limitations 

f our methods. We mainly consider the a priori nature of visual 

ata, thus the models are applicable to visual data and might not 

e applicable to non-visual data. 

In future work, it would be of great interest to lever- 

ge the prior information of CSC to improve the performance 

f other models. For the marginal effects of the TNN-based 

ethod, CSC might be a promising method to strengthen the 

onnection between the edge and subject. Meanwhile, explor- 

ng a method to automatically find or tune the best param- 

ters, the model will be more applicable and practical. More- 

ver, we simply display and store the trained dictionaries in ran- 

om order. Currently, sorting dictionaries before learning sparse 

epresentations has also attracted extensive attention. Further 

esearch on dictionary sorting is expected to achieve better 

esults. 
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ppendix A. LRTC-CSC-II 

The constraint condition can be rewritten as (6) . By introducing 

uxiliary variables F = X and Z = X , the augmented Lagrangian 

unction of (29) can be formulated as: 

 = 

n 3 ∑ 

k =1 

(‖ ̂

 F (k ) ‖ ∗t 
+ 

β1 

2 

∥∥F (k ) − X 

(k ) 
∥∥2 

F 
+ 

〈
W 

(k ) 
1 

, F (k ) − X 

(k ) 
〉
) 

+ 

β2 

2 ‖ 

Z − X ‖ 

2 
F + 〈 W 2 , Z − X 〉 + P (X ) + λ�(Z) . 

(A.1) 

In order to distinguish the k -th frontal slice and the k -th it-

ration times of a tensor, we use X (: , : , k ) to denote the k -th

rontal slice and X 

k for the k -th iteration. We divide the problem 

A.1) into three subproblems, i.e. [ F , Z], X , W 1 and W 2 , and solve

he problem with the same optimization framework of ADMM. 
13 
olving [ F , Z]-subproblem 

Similarly, we are going to solve the [ F , Z]-subproblem sepa- 

ately, since the variables are decoupled. 

1) By fixing X and Z , rewrite the function of F-subproblem: 

rg min 

F 

n 3 ∑ 

k =1 

‖ ̂

 F ( : , : , k ) ‖ ∗ + 

n 3 ∑ 

k =1 

β1 

2 

‖ ̂

 F ( : , : , k ) − ˆ X ( : , : , k ) 

+ 

W 1 ( : , : , k ) 

β1 

‖ 

2 
F . (A.2) 

he iterative closed-form solution of (A.2) is: 

ˆ 
 

i +1 ( : , : , k ) = D τk 

(
ˆ F 

i ( : , : , k ) − W 

i 
1 ( : , : , k ) 

β1 

)
= U diag ( max ( σ − τk , 0 ) ) V 

T , (A.3) 

here τk = 

1 
β1 

. After getting ˆ F 

i +1 , we can get F 

i +1 by inverse 

ourier transform 

 

i +1 = ifft ( ˆ F 

i +1 ) . (A.4) 

2) By fixing X and F , the Z-subproblem is: 

rg min Z 
β2 

2 

∥∥Z − (X − W 2 

β2 
) 
∥∥2 

F 
+ λ�(Z) , 

hich is the same with Model I. The process of solving Z- 

ubproblem has been introduced in detail in Model I, thus we omit 

hem here for readability. 

olving X -subproblem 

By fixing F and Z , the X -subproblem can be simplified and 

ewritten as: 

rg min 

X 

n 3 ∑ 

k =1 

β1 

2 

‖ ̂

 F ( : , : , k ) − ˆ X ( : , : , k ) 

+ 

W 1 ( : , : , k ) 

β1 

‖ 

2 
F + 

β2 

2 

‖Z − X + 

W 2 

β2 

‖ 

2 
F + P ( X ) . (A.5) 

he closed-form solution of (A.5) can be obtained by: 

 

i +1 = 

(
β1 F i +1 + β2 Z i +1 + W 

i 
1 + W 

i 
2 

β1 + β2 

)
�̄

+ T , (A.6) 

here �̄ is the complement set of �. 
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olving [ W 1 , W 2 ]-subproblem 

By fixing X and F , X and Z , we can update the Lagrangian 

ultiplier ω 1 and ω 2 , respectively: 

 

i +1 
1 = W 

i 
1 + β1 

(
F 

i +1 − X 

i +1 
)
, (A.7) 

nd 

 

i +1 
2 = W 

i 
2 + β2 

(
Z 

i +1 − X 

i +1 
)
. (A.8) 

The overall pseudocode of LRTC-CSC-II algorithm is summarized 

n Algorithm 2 . Actually, our model can degenerate to LRTC-TNN 

odel [11] by setting the hyperparameter λ = 0 . 
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