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ABSTRACT

In deep multi-view clustering, three intractable problems are posed

ahead of researchers, namely, the complementarity exploration

problem, the information preservation problem, and the cluster

structure discovery problem. In this paper, we consider the deep

multi-view clustering from the perspective of mutual informa-

tion (MI), and attempt to address the three important concerns

with aMutual Information-DrivenMulti-View Clustering (MIMC)

method, which extracts the common and view-specific informa-

tion hidden in multi-view data and constructs a clustering-oriented

comprehensive representation. Specifically, three constraints based

on MI are devised in response to three issues. Correspondingly, we

minimize the MI between the common representation and view-

specific representations to exploit the inter-view complementary

information. Further, we maximize the MI between the refined

data representations and original data representations to preserve

the principal information. Moreover, to learn a clustering-friendly

comprehensive representation, the MI between the comprehensive

embedding space and cluster structure is maximized. Finally, we

conduct extensive experiments on six benchmark datasets, and the

experimental results indicate that the proposed MIMC outperforms

other clustering methods.

CCS CONCEPTS

• Information systems→ Clustering; • Computing method-

ologies → Cluster analysis.
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1 INTRODUCTION

Multi-view clustering [10, 48, 50] (MVC) is an efficient data analy-

sis technique derived from multi-view data, it deals with multiple

views of data to extract the complementary information. A crucial

step is to learn a consistent representation [4, 5, 8] that integrates

the information across diverse views and reveals the discrimina-

tive quality of each sample. When it comes to multi-view data,

its essence is the multi-source features of objects collected from

varying domains. As a concrete example, relevant features can be

extracted from an image in terms of color (e.g., Color Histogram

[25]), texture (e.g., Local Binary Pattern [14]), etc. Semantic infor-

mation from different perspectives might be heterogeneous, but

it is a fundamental fact that various views conform to a uniform

cluster distribution.

In the past few years, MVC field has been researched intensively,

and a variety of traditional and deep algorithms with superior

performance have been sequentially proposed, their concepts for

exploring the view correlations are interesting and effective. In or-

der to seek the consistency across views, some methods [3, 12, 28]

mapped multi-source features into a unified subspace based on

Canonical Correlation Analysis (CCA). How to balance contribu-

tions of different views is a critical problem, adaptive weight scheme

is widely studied for this purpose. [20, 24, 33] integrated multiple

graphs to match the consensus affinity matrix through an auto-

matic weight assignment mechanism. Compared to mining the

relationships among different views with a pairwise matrix pattern,

some works [11, 18, 42] have been more concerned with excavating

the high-order view correlations via a tensor-oriented manner. Re-

cently, some multi-view representation learning works [19, 31, 34]

based on information bottleneck theory have been proposed to

filter superfluous information in multi-view data, thus preserving

the critical information beneficial for downstream tasks.

In general, complementarity exploration and clustering structure

discovery are two crucial concerns in both traditional and deep

MVC. While the above methods have achieved considerable cluster-

ing results, they still need to be improved in these two aspects. For

instance, the CCA-based and tensor-basedmethods [3, 11, 12, 18, 42]

focus more on pursuing the consistency across views and ignore

the role of view-specific information in enhancing the sample dis-

crimination. Similarly, the weight-based approaches [20, 24, 33]

https://doi.org/10.1145/3583780.3614986
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Figure 1: The general framework of the proposed MIMC. Specifically, the unified feature M is passed through the encoder 𝑒𝑈

to yield the common representation U. Meanwhile, each feature representation X(𝑣)
is input into its encoder 𝑒𝑣 to acquire a

compact representation S(𝑣) . To obtain the multi-level data information, we minimize the MI between U and S(𝑣) . Further,
the 𝑣-th view’s refined representation H(𝑣)

is decoded via the decoder 𝑑𝑣 to reconstruct the data X̂(𝑣)
with maximizing MI

between H(𝑣)
and X(𝑣)

. Considering the clustering task, we maximize the MI between instances and their 𝑘-nearest neighbors

for enhancing intra-cluster aggregation. Overall, three constraints based on MI address the complementary exploration,

information preservation, and cluster structure discovery, including min 𝐼 (U, S(𝑣) ), max 𝐼 (X(𝑣) ,H(𝑣) ), and max 𝐼 (Z,Z𝑛𝑒𝑖 ).

essentially focus on the view most similar to the consistent rep-

resentation, which are limited for exploiting complementary in-

formation from all views. As for the current emerging multi-view

representation learning methods [19, 31, 34] based on information

bottleneck, they lack specific strategies for clustering tasks, and

do not enhance the cluster structure of samples in the latent em-

bedding space. Moreover, how to protect the principal information

in the embedding space is an essential issue in deep MVC, limited

works give an effective solution in terms of MI.

Motivated by these limitations, we provide a unified perspective

from the MI for tackling the MVC problem, and propose aMutual

Information-DrivenMulti-ViewClustering (MIMC) method, which

fully utilizes the common and view-specific information among

multiple views and models a clustering-friendly comprehensive

representation. Specifically, we use the common encoder and view-

specific encoders to obtain a common representation and a set of

view-specific representations, respectively. To acquire more infor-

mation at different levels, the MI between the common represen-

tation and view-specific representations is constrained to be as

small as possible. Further, we construct the refined representation

composed of common and view-specific information for each view.

With the guidance of preserving the critical information in the

initial feature space, the refined representations are constrained

to maximize the MI between the original representations via the

view-specific decoders. Finally, the common representation and all

view-specific representations are integrated together for modeling

a comprehensive embedding space. Considering the clustering task,

we expect that the sample points lied in the comprehensive embed-

ding space are compliant with an explicit cluster structure. Then, a

clustering-friendly representation is learned via maximizing the MI

between the comprehensive embedding space and cluster structure.

In general, the contributions of this paper are concluded as follows:
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• We consider the deep MVC problem from the perspective of

MI, and propose a unified framework to handle three impor-

tant concerns, including the complementarity exploration,

information preservation, and cluster structure discovery.

• We transform the hardly measurable MI estimation between

representations into the form of optimizable loss function

with the rigorous theoretical derivation.

• We conduct experiments on six multi-view datasets to val-

idate the effectiveness of the proposed MIMC. Substantial

experimental results demonstrate its superiority over the

compared approaches.

We structure the remainder of this paper as follows. In Section

2, we review some dominant multi-view clustering methods and

representation learning methods based on mutual information. In

Section 3, the network architecture and the objective loss of the

proposed method are introduced. Experimental settings and results

are presented in Section 4. We summarize the paper in Section 5.

2 RELATEDWORKS

2.1 Multi-view Clustering

Multifarious multi-view clustering methods are proposed in the

past decades, we briefly introduce some representative ones herein.

Nonnegative matrix factorization decomposes the target matrix

into the form of multiplication of two nonnegative matrices, aim-

ing at extracting the most significant feature elements. [15–17]

explored a uniform nonnegative embedding matrix from multi-

ple representations, which was a discrete variable and viewed as

the label indicator. Subspace clustering is proficient at mining the

underlying affinity relationship between instances and is broadly

extended to multi-view scenarios. [20, 21, 49] were devoted to learn-

ing a well-structured subspace representation from multi-view data

via information enhancement manners. Tensors [9, 45, 46] with

multiple dimensions are naturally advantageous for capturing the

intrinsic correlations of multi-source data. [13, 39, 44] leveraged

the low-rank tensor approximation to recover the principal compo-

nents of multi-view representation tensor. Deep learning is known

for its sound ability to capture complex semantic information with

the help of neural networks. Some auto-encoder based approaches

[38, 41, 47] nonlinearly mapped multiple features into a compact

subspace, wherein a clustering-friendly representation was further

modeled via the Kullback-Leible divergence loss. While the above

methods have achieved decent performance, the ability to mine

multi-level information and enhance cluster structure in multi-view

data needs further improvement. The proposed MIMC provides an

effective framework for the multi-view clustering from a perspec-

tive ofMI, excavating themulti-level information and strengthening

the cohesiveness of samples within a same cluster via MI-based

constraints.

2.2 Representation Learning with Mutual

Information

Mutual information measures the amount of overlapping informa-

tion between random variables. The greater the mutual informa-

tion, the greater the correlations between variables, otherwise the

smaller. Feature representations of data usually contain a multitude

of superfluous information irrelevant to downstream tasks, then the

mutual information theory is widely drawn upon for representation

learning [6, 32, 37], with the objective of removing the redundant

information. Mao et al. [22] explored the shared information across

modalities via maximizing the MI between them. Schnapp et al.

[26] selected important features with minimum MI with labels. In

recent years, there are also some multi-view representation learn-

ing approaches incorporating MI theory emerging. Federici et al.

[7] captured the shared information through maximizing the MI of

representations under different views. Veyseh et al. [30] enhanced

the semantic consensus between the sentence structures of two

views via maximizing their MI. Wan et al. [31] learned a com-

mon representation and a series of view-specific representations

based on the information bottleneck principle. Existing multi-view

representation learning methods based on MI theory provide a

novel schema for exploring view complementarity with desirable

results, but they rarely incorporate feature learning strategies for

the clustering tasks. On the contrary, the proposed MIMC models a

clustering-friendly comprehensive representation via maximizing

the MI between the embedding space and cluster structure.

3 THE PROPOSED METHOD

3.1 Network Architecture

Given a multi-view dataset {X(𝑣) }𝑉
𝑣=1

, whereX(𝑣) ∈ R𝑑 (𝑣)×𝑁
is the

𝑣-th feature matrix with 𝑁 samples and 𝑑 (𝑣) dimension. The net-

work architecture is composed of four modules: common encoder

module, view-specific encoder module, view-specific decoder mod-

ule, and neighbors enhancement module. Fig. 1 shows the overall

framework of the proposed MIMC.

1) Common Encoder Module: To extract the common information,

multiple feature matrices are concatenated into a unified represen-

tation M=[X(1)
; · · ·;X(𝑉 ) ]∈ R

∑𝑉
𝑣=1𝑑

(𝑣)×𝑁
, which is further passed

through the common encoder 𝑒𝑈 to refine the common representa-

tion U. Specifically, 𝑒𝑈 is composed of three-layer fully connected

layers. The encoding process is formulated as U = 𝑒𝑈 (M|𝜓𝑒𝑈 ),
where 𝜓𝑒𝑈 denotes the weights in the encoder 𝑒𝑈 . The feature

dimension is reduced from

∑𝑉
𝑣=1 𝑑

(𝑣)
to 𝑙 after encoding.

2) View-Specific Encoder Module: Each view has its own view-

specific information. To condense this information, we perform

a nonlinear low-dimensional mapping using the view-specific en-

coder 𝑒𝑣 over each X(𝑣)
, i.e., S(𝑣) = 𝑒𝑣 (X(𝑣) |𝜓𝑒𝑣 ), where 𝑒𝑣 consists

of three-layer fully connected layers,𝜓𝑒𝑣 is the weights of 𝑒𝑣 . After

encoding, the data dimension is transformed: 𝑑 (𝑣) × 𝑁 → 𝑙 × 𝑁 .

In order not to overlap the information embedded in the common

representation and view-specific representations, we minimize the

MI between the two to obtain multi-level information.

3) View-Specific Decoder Module: We define the refined view-

specific representation as H(𝑣) = [U; S(𝑣) ] ∈ R2𝑙×𝑁 , the definition

is based on the idea that view information contains the common in-

formation and view-specific information. The view-specific decoder

𝑑𝑣 is designed with three-layer fully connected layers.H(𝑣)
as input

is passed through the decoder 𝑑𝑣 to model the reconstructed data

X̂(𝑣)
, i.e., X̂(𝑣) = 𝑑𝑣 (H(𝑣) |𝜓𝑑𝑣 ), where𝜓𝑑𝑣 denotes the parameters

in 𝑑𝑣 . In view of allowing H(𝑣)
to retain as much critical informa-

tion as possible in X(𝑣)
, the MI between the two is desired to be
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maximized. Interestingly, it can be proved that enforcing X̂(𝑣)
to

approximate X(𝑣)
achieves this goal.

4) Neighbors Enhancement Module: The comprehensive represen-

tation Z containing common and all view-specific information is

constructed by stacking U and {S(𝑣) }𝑉
𝑣=1

. To discover the clustering

structure, we attempt to enhance the MI between the embedding

space and cluster structure. Specifically, the MI between each sam-

ple point z𝑖 and its 𝑘-nearest neighbors {z𝑗 } 𝑗∈N𝑘 is maximized,

thus achieving intra-cluster aggregation and inter-cluster separa-

tion in the overall. For the convenience of statement, we denote

Z𝑛𝑒𝑖 as the 𝑘-nearest neighbor representation of Z.

3.2 Objective Function

As mentioned above, three vital constraints based on MI in the pro-

posed MIMC guarantee to learn a clustering-oriented comprehen-

sive embedding space, including min 𝐼 (U, S(𝑣) ), max 𝐼 (X(𝑣) ,H(𝑣) ),
and max 𝐼 (Z,Z𝑛𝑒𝑖 ), where 𝐼 (·, ·) denotes the MI between two vari-

ables. Thus, our optimization goal is formulated as

L =

𝑉∑︁
𝑣=1

(
min 𝐼 (U, S(𝑣) ) +max 𝐼 (X(𝑣) ,H(𝑣) )

)
+max 𝐼 (Z,Z𝑛𝑒𝑖 ) .

(1)

However, measuring the MI between variables are intractable. For-

tunately, we can derive the MI constraints into three optimizable

objective losses as follows.

1) min 𝑰 (U, S(𝒗) ): The common and view-specific representa-

tions are explored through common and view-specific encoders,

respectively. We are concerned about a critical fact that the informa-

tion included in the two representations may overlap excessively,

and then the view complementarity is not fully mined. Therefore,

it is expected to minimize the MI between them for facilitating

the acquisition of multi-level data information. We formulate the

MI between the common representation U and the view-specific

representation S(𝑣) as

𝐼 (U, S(𝑣) ) =
∫ ∫

𝑝 (u, s(𝑣) )𝑙𝑜𝑔 𝑝 (u, s(𝑣) )
𝑝 (u)𝑝 (s(𝑣) )

𝑑u𝑑s(𝑣) , (2)

where 𝑝 (·) indicates the probability density function. If the MI

betweenU and S(𝑣) is expected to beminimal, the value of 𝑝 (u, s(𝑣) )
should be as similar to 𝑝 (u)𝑝 (s(𝑣) ) as possible, which means that

variable u and variable s(𝑣) are independent whenever possible. We

adopt a frequently used independence measure function, i.e., the

covariance function to assess the correlation between u and s(𝑣) .
In essence, we need to evaluate the correlation between the feature

element U𝑖 (the 𝑖-th row of U) and the feature element S(𝑣) 𝑗 (the
𝑗-th row of S(𝑣) ):

𝐶𝑜𝑣 (U𝑖 , S(𝑣) 𝑗 ) = 1

𝑁

𝑁∑︁
𝑛=1

(𝑈 𝑖𝑛 − 𝜇𝑖U) (𝑆
(𝑣) 𝑗
𝑛 − 𝜇

(𝑣) 𝑗
S(𝑣)

)

=
1

𝑁
(US(𝑣)

𝑇

)𝑖 𝑗 − 𝜇𝑖U𝜇
(𝑣) 𝑗
S(𝑣)

,

(3)

where 𝑈 𝑖𝑛 and 𝑆
(𝑣) 𝑗
𝑛 denote the 𝑛-th entry of U𝑖 and S(𝑣) 𝑗 , re-

spectively. 𝜇𝑖U and 𝜇
(𝑣) 𝑗
S(𝑣)

denote the mean value of all entries in

U𝑖 and S(𝑣) 𝑗 , respectively. For the simplicity of optimization ob-

jective, we expect that 𝜇𝑖U is equivalent to zero, which is readily

achieved via𝑈 𝑖𝑛 = 𝑈 𝑖𝑛 −𝜇𝑖U. Thus, we only need to focus on the term

(US(𝑣)𝑇 )𝑖 𝑗 . Our goal is to minimize the covariance of any u and

s(𝑣) , i.e., US(𝑣)
𝑇 → 0, where 0 is a matrix with all elements of zero.

The problem US(𝑣)
𝑇 → 0 can be measured byminU,S(𝑣) | |US(𝑣)

𝑇 | |0.
Since the minimization of 𝑙0-norm is an NP hard problem, we relax

𝑙0-norm to 𝑙1-norm, and obtain a relaxed orthogonal loss form:

L𝑂𝑟𝑡 = min

U,S(𝑣)
| |US(𝑣)

𝑇

| |1 . (4)

2) max 𝑰 (X(𝒗) ,H(𝒗) ): The refined representation H(𝑣)
of the

𝑣-th view is obtained via H(𝑣) = [U; S(𝑣) ]. This construction man-

ner follows the hypothesis that an individual view’s representation

consists of a common representation and a view-specific represen-

tation. Furthermore, we argue that a good refined representation

retains the principal information in the initial feature space and is

a compact formulation of the initial representation. Accordingly,

we expect to maximize the MI between H(𝑣)
and X(𝑣)

, which is

written as

𝐼 (X(𝑣) ,H(𝑣) ) =
∫ ∫

𝑝 (x(𝑣) , h(𝑣) )𝑙𝑜𝑔( 𝑝 (x
(𝑣) |h(𝑣) )

𝑝 (x(𝑣) )
)𝑑x(𝑣)𝑑h(𝑣) .

(5)

For simplicity of formulas, we omit the superscript (𝑣) in the follow-
ing derivation. Let 𝑞(x|h) be the variational estimation of 𝑝 (x|h),
according to the definition of Kullback-Leibler (KL) divergence, we

have

𝐷𝐾𝐿 [𝑝 (x|h), 𝑞(x|h)] =
∫

𝑝 (x|h)𝑙𝑜𝑔( 𝑝 (x|h)
𝑞(x|h) )𝑑x ≥ 0

⇒
∫

𝑝 (x|h)𝑙𝑜𝑔(𝑝 (x|h))𝑑x ≥
∫

𝑝 (x|h)𝑙𝑜𝑔(𝑞(x|h))𝑑x,
(6)

then, we further have∫
𝑝 (h)𝑑h

∫
𝑝 (x|h)𝑙𝑜𝑔(𝑝 (x|h))𝑑x

≥
∫

𝑝 (h)𝑑h
∫

𝑝 (x|h)𝑙𝑜𝑔(𝑞(x|h))𝑑x

⇒
∫ ∫

𝑝 (x,h)𝑙𝑜𝑔( 𝑝 (x|h)
𝑝 (x) )𝑑x𝑑h

≥
∫ ∫

𝑝 (x, h)𝑙𝑜𝑔(𝑞(x|h)
𝑝 (x) )𝑑x𝑑h.

(7)

From Eq. (7), the inequality related to 𝐼 (X,H) can be obtained

𝐼 (X,H) ≥
∫∫

𝑝 (x, h)𝑙𝑜𝑔(𝑞(x|h)
𝑝 (x) )𝑑x𝑑h

≥
∫∫

𝑝 (x, h)𝑙𝑜𝑔(𝑞(x|h))𝑑x𝑑h −
∫∫

𝑝 (x, h)𝑙𝑜𝑔(𝑝 (x))𝑑x𝑑h.
(8)

Since −
∫∫

𝑝 (x, h)𝑙𝑜𝑔(𝑝 (x))𝑑x𝑑h ≥ 0, it further gives

𝐼 (X,H) ≥
∫

𝑝 (x)𝑑x
∫

𝑝 (h|x)𝑙𝑜𝑔(𝑞(x|h))𝑑h. (9)

According to Monte Carlo sampling method [27], we have∫
𝑝 (x)𝑑x

∫
𝑝 (h|x)𝑙𝑜𝑔(𝑞(x|h))𝑑h= 1

𝑁

𝑁∑︁
𝑖=1

E𝑝 (h |x𝑖 )𝑙𝑜𝑔(𝑞(x𝑖 |h)) .

(10)
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Algorithm 1 The main steps of the proposed MIMC

Input: Multi-view data

{
X(𝑣)

}𝑉
𝑣=1

, parameters 𝛼 , 𝜆.

Output: Comprehensive representation Z.
1: Select the Adam as the optimizer and initialize the learning

rate to 0.001, the training epochs to 500.

2: for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑝𝑜𝑐ℎ𝑠 do

3: Update 𝑒𝑈 , {𝑒𝑣}𝑉𝑣=1, and {𝑑𝑣}𝑉𝑣=1 via minimizing L𝑅𝑒𝑐 via
Eq. (14);

4: end for

5: for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑝𝑜𝑐ℎ𝑠 do

6: Calculate the orthogonal loss L𝑂𝑟𝑡 via Eq. (4);
7: Calculate the reconstruction loss L𝑅𝑒𝑐 via Eq. (14);
8: Calculate the contrastive loss L𝐶𝑜𝑛 via Eq. (21);

9: Calculate the complete objective loss L by Eq. (23) and

update the network parameters via back propagation;

10: end for

11: Use Z as the input of K-means to yield the data labels.

Assuming that 𝑞(·) denotes the Gaussian density distribution, then

𝑞(x𝑖 |h) has the following form:

𝑞(x𝑖 |h) =
1

√
2𝜋𝜎

𝑒𝑥𝑝 (−
||x𝑖 − 𝑅(h) | |2

2

𝜎2
). (11)

Bringing Eq. (11) into Eq. (10), the following inequality holds:

𝐼 (X,H) ≥ 1

𝑁

𝑁∑︁
𝑖=1

E𝑝 (h |x𝑖 )(log(
√
2𝜋𝜎) −

||x𝑖 − 𝑅(h) | |2
2

2𝜎2
) . (12)

Hence, the problem of maximizing 𝐼 (X,H) is transformed into min-

imizing
1

𝑁

∑𝑁
𝑖=1E𝑝 (h |x𝑖) | |x𝑖 − 𝑅(h) | |2

2
. We use the Monte Carlo sam-

pling method [27] to further simplify, then the following equation

can be derived

1

𝑁

𝑁∑︁
𝑖=1

E𝑝 (h|x𝑖 ) | |x𝑖 − 𝑅 (h) | |
2

2
=

1

𝑁

𝑁∑︁
𝑖=1

𝑀∑︁
𝑚=1

| |x𝑖 − 𝑅 (H𝑖,𝑚 ) | |2
2
, (13)

where H𝑖,𝑚 denotes the𝑚-th distribution of the 𝑖-th refined sample.

Specifically, when the data is encoded into the embedding space

by a fixed encoder, 𝑀 is equivalent to 1. Then we have H𝑖,𝑚 =

h𝑖 . According to above deduction, we can know that maximizing

𝐼 (X(𝑣) ,H(𝑣) ) is translated into the following minimization problem:

L𝑅𝑒𝑐 = min

h(𝑣)
𝑖

𝑁∑︁
𝑖=1

| |x(𝑣)
𝑖

− 𝑅(h(𝑣)
𝑖

) | |2
2
, (14)

where 𝑅(·) can be viewed as the decoder 𝑑𝑣 . Then, 𝑅(h(𝑣)𝑖
) is equiv-

alent to the reconstructed data x̂𝑖 . Hence, from the perspective of

MI, the procedure of data reconstruction is essentially to maximize

the MI between the refined representation H(𝑣)
and the original

data X(𝑣)
.

3) max 𝑰 (Z,Z𝒏𝒆𝒊): We form a comprehensive representation

via Z = [U; S(1) , · · · , ; S(𝑉 ) ]. In unsupervised clustering scenario,

there are no available data labels to guide the learning of feature

representations, and it cannot be guaranteed that the learned rep-

resentations are strongly correlated with their labels. Nevertheless,

we instead consider to enhance the MI between the embedding

space and cluster structure for modeling a clustering-oriented rep-

resentation. Specifically, the MI between sample points and their

𝑘-nearest neighbors is expected to be maximized, thus achieving the

intra-cluster aggregation and inter-cluster separation in a holistic

context. The 𝑘-nearest neighbors enhancement is mathematically

written as

𝐼 (Z,Z𝑛𝑒𝑖 ) =
∫ ∫

𝑝 (z𝑖 , z𝑗 )𝑙𝑜𝑔
𝑝 (z𝑗 |z𝑖 )
𝑝 (z𝑗 )

𝑑z𝑖𝑑z𝑗

=

∫
𝑝 (z𝑖 )𝑑z𝑖

∫
𝑝 (z𝑗 |z𝑖 )𝑙𝑜𝑔

𝑝 (z𝑗 |z𝑖 )
𝑝 (z𝑗 )

𝑑z𝑗 ,
(15)

where z𝑖 and z𝑗 denote a variable in the comprehensive representa-

tion space and the neighborhood space of sample points, respec-

tively. Using the Monte Carlo sampling, the following estimation

can be made

𝐼 (Z,Z𝑛𝑒𝑖 ) =
1

𝑁

𝑁∑︁
𝑖=1

1

𝑁𝑛𝑒𝑖

𝑁𝑛𝑒𝑖∑︁
𝑗=1

𝑙𝑜𝑔
𝑝 (z𝑗 |z𝑖 )
𝑝 (z𝑗 )

, (16)

where 𝑁𝑛𝑒𝑖 is the number of neighbors. Thus, how to estimate

𝑝 (z𝑗 |z𝑖 )/𝑝 (z𝑗 ) becomes the focus. Inspired by InfoNCE [29], we

use a function 𝑓 (z𝑗 , z𝑖 ) to model 𝑝 (z𝑗 |z𝑖 )/𝑝 (z𝑗 ), and employ the

cross entropy loss function to solve its optimal solution:

𝑙𝐶𝐸 = − log

𝑓 (z𝑗 , z𝑖 )∑𝑁
𝑘=1

𝑓 (z𝑘 , z𝑖 )
. (17)

Theorem 1. If the optimization objective Eq. (17) is minimized,
then the mutual information between Z and Z𝑛𝑒𝑖 can be maximized.

Proof. When estimating the overall cross entropy loss w.r.t. Eq.

(17), we have

L𝐶𝐸 = − 1

𝑁

𝑁∑︁
𝑖

𝑁𝑛𝑒𝑖∑︁
𝑗=1

𝑙𝑜𝑔
𝑓 (z𝑗 , z𝑖 )∑𝑁
𝑘=1

𝑓 (z𝑘 , z𝑖 )

=− 1

𝑁

𝑁∑︁
𝑖

𝑁𝑛𝑒𝑖∑︁
𝑗

(
𝑙𝑜𝑔

𝑝 (z𝑗 |z𝑖 )
𝑝 (z𝑗 )

− 𝑙𝑜𝑔

𝑁∑︁
𝑘=1

𝑝 (z𝑘 |z𝑖 )
𝑝 (z𝑘 )

)
,

(18)

it can be derived that 𝑙𝑜𝑔
∑𝑁
𝑘=1

𝑝 (z𝑘 |z𝑖 )
𝑝 (z𝑘 ) = 𝑙𝑜𝑔𝑁 . Hence, Eq. (18) is

rewritten as

L𝐶𝐸 = − 1

𝑁

𝑁∑︁
𝑖

𝑁𝑛𝑒𝑖∑︁
𝑗=1

𝑙𝑜𝑔
𝑝 (z𝑗 |z𝑖 )
𝑝 (z𝑗 )

+ 𝑁𝑛𝑒𝑖𝑙𝑜𝑔𝑁

= −𝑁𝑛𝑒𝑖 𝐼 (Z,Z𝑛𝑒𝑖 ) + 𝑁𝑛𝑒𝑖𝑙𝑜𝑔𝑁 .

(19)

So far, we can observe that when L𝐶𝐸 reaches the minimum,

𝐼 (Z,Z𝑛𝑒𝑖 ) takes the maximum. The proof is completed. □

According to Theorem 1, we only need to optimize Eq. (17) to

the minimum, then achieve the goal of maximizing 𝐼 (Z,Z𝑛𝑒𝑖 ).
To simplify calculation, we use sampling manner to estimate∑𝑁
𝑘=1

𝑓 (z𝑘 , z𝑖 ), which is due to

𝑁𝑠𝑎𝑚∑︁
𝑘=1

𝑓 (z𝑘 , z𝑖 ) = 𝑁𝑠𝑎𝑚E𝑘 (𝑓 (z𝑘 , z𝑖 )) =
𝑁𝑠𝑎𝑚

𝑁

𝑁∑︁
𝑘=1

𝑓 (z𝑘 , z𝑖 ), (20)

where 𝑁𝑠𝑎𝑚 is the number of sampling data points. Thus, we can

reformulate Eq. (18) into the form of current popular contrastive
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Table 1: Statistics of six benchmark datasets.

Dataset ID Datasets Instances Views Clusters Feature Dimensions Category

1 ALOI 1079 4 10 64 / 64 / 77 / 13 Object image

2 GRAZ02 1476 6 4 512 / 32 / 256 / 500 / 500 / 680 Object image

3 MSRC 210 6 7 1302 / 48 / 512 / 100 / 256 / 210 Object image

4 Scene15 4485 3 15 1800 / 1180 / 1240 Scene image

5 UCI 2000 3 10 240 / 76 / 6 Digit image

6 WikipediaArticles 693 2 10 128 / 10 Document

learning:

L𝐶𝑜𝑛 = − 1

𝑁

𝑁∑︁
𝑖=1

𝑁𝑝𝑜𝑠∑︁
𝑗=1

𝑙𝑜𝑔
𝑓 (z𝑗 , z𝑖 )∑𝑁𝑛𝑒𝑔

𝑘=1
𝑓 (z𝑘 , z𝑖 )

. (21)

It is worth noting that we consider the neighbors of the 𝑖-th data

point as its positive instances, i.e., 𝑁𝑛𝑒𝑖 = 𝑁𝑝𝑜𝑠 , while the 𝑁𝑠𝑎𝑚
data points sampled in Eq. (20) are considered as its 𝑁𝑛𝑒𝑔 nega-

tive instances. We stipulate 𝑁𝑛𝑒𝑔 negative instances consist of all

samples except the positive instances. Furthermore, the function

𝑓 (z𝑗 , z𝑖 ) is defined as

𝑓
(
z𝑗 , z𝑖

)
= 𝑒𝑥𝑝

(
z⊤
𝑗
z𝑖

z𝑗 

 ∥z𝑖 ∥

)
. (22)

Up to this point, we transform the intractable optimization goal

Eq. (1) into the optimizable objective function:

L = L𝑅𝑒𝑐 + 𝛼L𝑂𝑟𝑡 + 𝜆L𝐶𝑜𝑛, (23)

where 𝛼 and 𝜆 are two nonnegative hyperparameters to balance

the three regularization terms. Algorithm 1 summarizes the flow of

the proposed MIMC.

3.3 Training Process

The network training process can be divided into two phases: pre-

training phase and complete training phase. We adopt the Adam
optimizer and fix the learning rate as 0.001.

1) Pre-training phase: In pre-training phase, we send the stitched

features M into the common encoder 𝑒𝑈 to obtain the common

representation U, and pass {X(𝑣) }𝑉
𝑣=1

through the view-specific en-

coders {𝑒𝑣}𝑉𝑣=1 to get the view-specific representations {S(𝑣) }𝑉
𝑣=1

,

respectively. Thus, all the refined view-specific’s representations

{H(𝑣) }𝑉
𝑣=1

are input into multiple decoders {𝑑𝑣}𝑉𝑣=1 to reconstruct

the data {X̂(𝑣) }𝑉
𝑣=1

, respectively. Thus, we only calculate the recon-

struction loss L𝑅𝑒𝑐 between {X(𝑣) }𝑉
𝑣=1

and {X̂(𝑣) }𝑉
𝑣=1

.

2) Complete training phase: The parameters of encoders and de-

coders are initialized with that obtained in pre-training. In the

complete training phase, the reconstruction loss L𝑅𝑒𝑐 , orthogo-
nal loss L𝑂𝑟𝑡 , and contrastive loss L𝐶𝑜𝑛 are all computed. Thus,

the network parameters are further tuned via the back propaga-

tion. Finally, the proposed model yields the clustering-oriented

comprehensive representation Z. Our code is available at https:

//github.com/imvc2023/MIMC.

4 EXPERIMENTS

4.1 Experimental Setup

Datasets. We collect six public multi-view datasets to conduct

experiments. Concretely, ALOI
1
is composed of 1079 object im-

ages in 10 categories and 4 views, including color histograms (CH),

color similarities (CS), HSV color histograms, and Haralick features.

GRAZ02
2
contains 1476 object images with 6 visual features, which

are SURF feature, SIFT feature, LBP feature, WT feature, pyramid

HOG, GIST feature, respectively. These images are divided into

4 classes. MSRC
3
includes 210 images divided into 7 categories,

and 6 features are extracted such as HOG feature, LBP feature,

SIFT feature, CENTRIST feature, GIST feature, and CM feature.

Scene15
4
consists of 4485 scene images in 15 classes, each image

has 3 features: PHOW feature, CENTRIST feature, and PRI-CoLBP

feature. UCI [1] contains 2000 handwritten numeric images, the

digits range from 0 to 9, 3 features are extracted: PIX feature, FOU

feature, and MOR feature. WikipediaArticles
5
contains 693 short

documents in 10 classes with 2 views. Table 1 provides a summary

of main statistics of above datasets.

Baselines.We select the K-means algorithm as the basic base-

line method and additionally collect ten SOTA multi-view clus-

tering methods, including AMGL [23], CSMSC [21], GMC [33],

CGL [18], EOMSC-CA [20],MvDSCN [49], DSRL [36], DMSC-

UDL [35], MFLVC [43], DFP-GNN [40]. We set the parameters

of these methods according to the values suggested in their paper.

As for the proposed MIMC, we vary 𝛼 in {0.0001, 0.0005} and 𝜆 in

{0.0005, 0.001, 0.01}, and fix the number of positive instances as

20. The dimensions of encoders are set as 𝑑 (𝑣) − 500 − 200 − 64

or 𝑑 (𝑣) − 200 − 100 − 64, and the decoders’ dimensions are fixed

as 128 − 200 − 500 − 𝑑 (𝑣) or 128 − 100 − 200 − 𝑑 (𝑣) . ACC, NMI,

ARI, F-score are used to evaluate the clustering performance. Each

experiment is run 10 times and the average values are recorded.

4.2 Experimental Results and Analysis

We illustrate the experimental results of the compared methods

versus the proposed MIMC in Table 2. The best results are bolded,

while the second best results are underlined. Traditional shallow

models AMGL, CSMSC, GMC, CGL, EOMSC-CA perform feature

transformations in a linear way, which do not efficiently cope with

complex data distributions. Moreover, most of them only pursue

1
https://elki-project.github.io/datasets/multi-view

2
http://www.emt.tugraz.at/~pinz/data/GRAZ_02

3
http://research.microsoft.com/en-us/projects/objectclassrecognition/

4
http://www-cvr.ai.uiuc.edu/ponce_grp/data/

5
http://lig-membres.imag.fr/grimal/data.html

https://github.com/imvc2023/MIMC
https://github.com/imvc2023/MIMC
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Table 2: Clustering performance (%) of various methods on six datasets.

Methods

ALOI GRAZ02 MSRC

ACC NMI ARI F-score ACC NMI ARI F-score ACC NMI ARI F-score

K-means 47.49 47.34 32.98 41.04 35.91 3.2 3.56 33.83 45.00 38.08 24.28 37.39

AMGL 52.18 54.85 33.18 41.03 48.19 13.97 13.76 38.35 74.48 71.10 58.74 65.15

CSMSC 75.66 73.32 63.61 67.42 - - - - 80.48 72.69 67.30 71.92

GMC 67.19 64.64 36.73 45.23 47.09 13.16 12.39 38.51 89.52 81.53 76.78 80.05

CGL 94.89 91.54 89.18 90.25 46.46 12.54 11.43 33.87 94.76 88.83 87.74 89.45

EOMSC-CA 65.80 76.36 47.24 54.49 42.48 12.19 10.66 33.33 69.52 71.34 57.70 64.10

MvDSCN 82.39 82.08 74.56 79.56 40.44 6.81 5.93 31.24 72.38 60.93 50.61 61.72

DSRL 78.47 78.71 61.71 64.41 51.98 17.38 17.08 38.92 85.76 78.79 69.86 74.31

DMSC-UDL 55.79 52.99 38.68 48.88 41.32 8.33 8.28 32.65 57.14 47.45 35.09 48.70

MFLVC 82.63 78.57 69.59 73.89 47.97 13.76 13.79 35.64 81.43 75.01 67.02 73.84

DFP-GNN 80.26 80.01 71.35 76.66 48.85 13.97 13.82 36.15 71.90 63.00 51.98 61.64

MIMC 96.11 92.91 91.30 92.84 55.08 24.38 20.28 42.84 96.19 92.05 91.06 92.89

Methods

Scene15 UCI WikipediaArticles

ACC NMI ARI F-score ACC NMI ARI F-score ACC NMI ARI F-score

K-means 30.49 28.79 15.00 21.93 38.76 46.64 31.35 38.86 54.69 51.48 39.02 45.80

AMGL 40.19 45.49 26.28 33.98 76.28 78.30 68.69 72.04 53.10 49.35 33.48 41.69

CSMSC 49.53 53.22 36.70 41.52 78.75 76.97 70.75 73.74 52.03 46.47 38.36 44.91

GMC 40.20 45.37 21.09 29.71 74.75 80.86 70.96 74.11 55.12 51.68 37.19 44.54

CGL 47.28 55.14 34.94 40.10 84.25 90.52 83.22 85.02 54.16 49.83 37.09 44.11

EOMSC-CA 45.13 52.40 30.98 37.11 54.80 67.09 46.28 53.57 56.13 52.91 42.30 48.47

MvDSCN 43.34 44.18 26.75 32.83 81.85 71.72 65.82 69.47 34.63 29.74 17.58 29.79

DSRL 10.74 0.58 0.11 10.73 78.28 79.99 70.57 73.77 59.06 50.10 39.19 47.24

DMSC-UDL 39.71 41.05 23.48 29.82 75.80 72.62 63.68 70.96 38.24 31.16 43.02 33.09

MFLVC 43.01 44.55 26.75 33.12 79.95 78.36 69.73 73.31 40.40 31.63 22.57 34.06

DFP-GNN 50.28 55.44 36.47 43.81 82.55 88.59 81.10 86.71 55.70 53.49 40.65 48.97

MIMC 56.19 54.67 37.54 43.74 93.95 90.49 87.31 89.56 59.74 55.17 44.29 50.16

the consensus across views. Nonetheless, MIMC leverages neural

networks to map data nonlinearly into a compact space, and ex-

plores the common and view-specific information based on MI. In

light of these, MIMC produces the clustering results surpassing

that of traditional shallow methods. Compared to deep multi-view

(a) Epoch 0 (b) Epoch 100 (c) Epoch 200

(d) Epoch 300 (e) Epoch 400 (f) Epoch 500

Figure 2: The scatter plot of MIMC’s clustering results on

UCI dataset as the training epoch increases via the t-SNE

technology.

approaches MvDSCN, DSRL, DMSC-UDL, MFLVC, and DFP-GNN,

MIMC is also in the leading position. DMSC-UDL employs the or-

thogonal regularization to obtain more data information, but its

clustering effects are less effective than other methods, which may

be attributed to difficulty of learning a consistent affinity matrix

from multiple representations with enhanced diversity. To avoid

this problem, MIMC concatenates the common and view-specific

representations with their minimal MI to obtain a comprehensive

representation. In the contrast strategy of MFLVC, only the same

samples under different views are regarded as positive pairs with

each other, the selection of positive instances is too restricted. In

MIMC, 𝑘-nearest neighbors of a sample are recognized as it positive

instances, which facilitates to produce intra-cluster aggregation

effect and is more suitable for clustering task. Fig. 2 shows the

gradual separation process of different clusters as the number of

training epochs increases, it can be seen that different clusters

are continuously pulled apart from each other, which means that

sample features are increasingly discriminative.

4.3 Mutual Information Evaluation

We adopt an efficient MI evaluator MINE [2] to measure the MI

between different representations. Taking the UCI dataset as an

example, Fig. 3 shows the value curves of MI between different

representations with the increasing training epochs, including the
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(a) I(U, S(1)) (b) I(X(1), H(1)) (c) I(U, S(2)) (d) I(X(2), H(2)) (e) I(U, S(3)) (f) I(X(3), S(3)) (g) I(Z, Znei)

Figure 3: The value curves of MI between representations as the training epoch increases on the UCI dataset. It can be seen that

the change trends of MI conforms to the proposed optimization objectives.

Table 3: Ablation results (%) of the proposed MIMC on six datasets.

Loss

ALOI GRAZ02 MSRC

ACC NMI ARI F-score ACC NMI ARI F-score ACC NMI ARI F-score

L𝑅𝑒𝑐 84.43 – 88.67 – 78.82 – 86.01 – 36.18 – 3.38 – 2.92 – 28.35 – 62.86 – 59.83 – 45.34 – 57.52 –

L𝑅𝑒𝑐+L𝑂𝑟𝑡 81.00 ↓ 86.08 ↓ 74.39 ↓ 83.22 ↓ 39.23 ↑ 5.19 ↑ 5.09 ↑ 34.13 ↑ 79.05 ↑ 68.42 ↑ 59.72 ↑ 68.00 ↑
L𝑅𝑒𝑐+L𝐶𝑜𝑛 91.66 ↑ 88.40 ↑ 83.74 ↑ 86.17 ↑ 48.98 ↑ 17.25 ↑ 14.54 ↑ 37.38 ↑ 74.29 ↑ 73.01 ↑ 59.67 ↑ 71.79 ↑

L 96.11 ↑ 92.91 ↑ 91.30 ↑ 92.84 ↑ 55.08 ↑ 24.38 ↑ 20.28 ↑ 42.84 ↑ 96.19 ↑ 92.05 ↑ 91.06 ↑ 92.89 ↑

Loss

Scene15 UCI WikipediaArticles

ACC NMI ARI F-score ACC NMI ARI F-score ACC NMI ARI F-score

L𝑅𝑒𝑐 21.76 – 22.83 – 7.90 – 19.61 – 81.15 – 79.74 – 71.57 – 75.04 – 40.12 – 33.53 – 18.02 – 32.88 –

L𝑅𝑒𝑐+L𝑂𝑟𝑡 50.93 ↑ 53.63 ↑ 34.76 ↑ 42.55 ↑ 82.80 ↑ 79.95 ↑ 73.60 ↑ 76.77 ↑ 42.71 ↑ 44.65 ↑ 26.38 ↑ 38.86 ↑
L𝑅𝑒𝑐+L𝐶𝑜𝑛 50.81 ↑ 51.52 ↑ 33.37 ↑ 42.19 ↑ 83.40 ↑ 81.73 ↑ 74.73 ↑ 77.97 ↑ 48.63 ↑ 45.19 ↑ 30.72 ↑ 40.76 ↑

L 56.19 ↑ 54.67 ↑ 37.54 ↑ 43.74 ↑ 93.95 ↑ 90.49 ↑ 87.31 ↑ 89.56 ↑ 59.74 ↑ 55.17 ↑ 44.29 ↑ 50.16 ↑

MI between the common representation U and view-specific repre-

sentation S(𝑣) , the MI between the initial representation X(𝑣)
and

refined representation H(𝑣)
, and the MI between the comprehen-

sive representation Z and neighbor representation Z𝑛𝑒𝑖 . It can be

seen that the 𝐼 (U, S(𝑣) ) drops rapidly while the 𝐼 (X(𝑣) ,H(𝑣) ) and
𝐼 (Z,Z𝑛𝑒𝑖 ) rise rapidly, which demonstrates that the derived loss

functions can achieve the corresponding optimization objectives of

MI between representations.

4.4 Ablation Study

The proposed MIMC consists of three essential losses, including

orthogonal loss L𝑂𝑟𝑡 , reconstruction loss L𝑅𝑒𝑐 , and contrastive

loss L𝐶𝑜𝑛 . Table 3 exhibits the clustering results when MIMC is

equipped with different losses. We can observe that when MIMC

has only L𝑅𝑒𝑐 , the clustering performance is almost always the

worst, and it is improved by coupling L𝑅𝑒𝑐 with L𝑂𝑟𝑡 or L𝐶𝑜𝑛 .
Certainly, the best results are obtained with using the three losses

in combination.

Fig. 4 shows the scatter plots with different losses on the UCI

dataset. When MIMC contains only L𝑅𝑒𝑐 (Fig. 4(a)), different clus-
ters are close together without sound separability. After L𝑂𝑟𝑡 is
introduced (Fig. 4(b)), the division of instances is somewhat im-

proved. The main reason is that multi-level data information is

obtained and the data discrimination is enhanced. Nevertheless, the

overall separability still needs to be raised. Interestingly, as MIMC is

equipped with L𝐶𝑜𝑛 (Fig. 4(c)), although the separability of diverse

clusters is boosted, the division of some samples is apparently not

reasonable. WhenMIMC is armed with three losses (Fig. 4(d)), it can

(a) LRec (b) LRec + LOrt

(c) LRec + LCon (d) L

Figure 4: Scatter plot with different losses of the proposed

MIMC on UCI dataset via the t-SNE technology.

be observed that the overall isolation of clusters and the rationality

of segmentation is the best.

In addition, to verify the contribution of view-specific infor-

mation to boost multi-view clustering performance, we perform
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clustering with the common representation and common+view-

specific representation, respectively. The performance comparison

is illustrated in Fig. 5. It can be noticed that using only the common

representation gives worse results than using the common+view-

specific representation on all datasets, which suggests that view-

specific information is beneficial to improve the clustering effects.
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Figure 5: Clustering performance using the common rep-

resentation and the common+view-specific representation,

respectively.

4.5 Parameter Sensitivity Investigation

In the objective function Eq. (23), there are two trade-off parameters

𝛼 and 𝜆. To inquire into their effects on the clustering performance

of the proposed model, we vary 𝛼 and 𝜆 in {0.0001, 0.001, 0.01, 0.1, 1,

10}, and report the experimental results with diverse parameter com-

binations in Fig. 6. It can be seen that the clustering performance

is inferior when 𝛼 is set to a large value, which may be attributed

to excessive penalty for the orthogonal loss L𝑂𝑟𝑡 , resulting in too

many zero-elements in U or S(𝑣) and the missing of substantial

information. Significantly, when 𝜆 is tuned to be relatively large,

the performance turns a little better, which thanks to more im-

portance given to the contrastive loss L𝐶𝑜𝑛 , thus facilitating the

cluster division.

(a) ACC (b) NMI

Figure 6: Parameter sensitivity analysis on ALOI dataset.

4.6 Convergence Analysis

We verify the convergence of the proposed MIMC in the Fig. 7. The

horizontal axis represents the number of training epochs and the

vertical axis represents the values of loss L. As we can see, the loss

value rapidly decreases at first and then gradually stabilizes with

continuous training. Therefore, the convergence of the proposed

MIMC is guaranteed.

(a) ALOI (b) GRAZ02 (c) MSRC

(d) Scene15 (e) UCI (f) WikipediaArticles

Figure 7: Convergence curves of the proposed MIMC on six

datasets.

5 CONCLUSION

In this paper, we propose a novel multi-view clustering approach

from the perspective of MI. Three constraints of MI are considered

to model a clustering-friendly representation. Specifically, to ob-

tain multi-level information, the MI of common representation and

view-specific representation is forced to be minimized. Thus, we

reconstruct the original data from the refined representation with

guaranteeing the maximization of their MI. Furthermore, in order

to make the comprehensive representation more suitable for clus-

tering task, the MI of the comprehensive feature space and cluster

structure is maximized. Finally, numerous experimental results on

six challenging multi-view datasets confirm the effectiveness of the

proposed MIMC.
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