
40

FedEgo: Privacy-preserving Personalized Federated Graph

Learning with Ego-graphs

TAOLIN ZHANG, CHENGYUAN MAI, YAOMIN CHANG, CHUAN CHEN, LIN SHU,

and ZIBIN ZHENG, Sun Yat-sen University, China

As special information carriers containing both structure and feature information, graphs are widely used in

graph mining, e.g., Graph Neural Networks (GNNs). However, graph data are stored separately in multiple

distributed parties in some practical scenarios, which may not be directly shared due to conflicts of interest.

Hence, federated graph neural networks are proposed to address such data silo issues while preserving

each party’s privacy (or client). Nevertheless, different graph data distributions of various parties, which is

known as the statistical heterogeneity, may degrade the performance of naive federated learning algorithms

like FedAvg. In this article, we propose FedEgo, a federated graph learning framework based on ego-graphs

to tackle the challenges above, in which each client will train their local models while also contributing to

the training of a global model. FedEgo applies GraphSAGE over ego-graphs to make full use of the structure

information and utilizes Mixup for privacy concerns. To deal with the statistical heterogeneity, we integrate

personalization into learning and propose an adaptive mixing coefficient strategy that enables clients to

achieve their optimal personalization. Extensive experimental results and in-depth analysis demonstrate the

effectiveness of FedEgo.

CCS Concepts: • Computing methodologies → Neural networks; • Information systems → Data

mining;

Additional Key Words and Phrases: Ego-graphs, graph neural network, personalized federated learning

ACM Reference format:

Taolin Zhang, Chengyuan Mai, Yaomin Chang, Chuan Chen, Lin Shu, and Zibin Zheng. 2023. FedEgo: Privacy-

preserving Personalized Federated Graph Learning with Ego-graphs. ACM Trans. Knowl. Discov. Data. 18, 2,

Article 40 (November 2023), 27 pages.

https://doi.org/10.1145/3624017

1 INTRODUCTION

Graph Neural Networks (GNNs) have shown incredible performance in distilling information

from graph data and deriving expressive node embedding that facilitates downstream tasks such

as node classification and link prediction. Nevertheless, previous GNN works focus on centralized

The research is supported by the National Key R&D Program of China (No. 2020YFB1006001), the National Natural Science

Foundation of China (62176269), the Guangzhou Science and Technology Program (2023A04J0314).

Authors’ addresses: T. Zhang, C. Mai, Y. Chang, C. Chen (Corresponding author), and L. Shu, Sun Yat-sen University,

School of Computer Science and Engineering, Higher Education Mega Center, Panyu District, Guangzhou, China; e-mails:

{zhangtlin3, maichy7, changym3}@mail2.sysu.edu.cn, chenchuan@mail.sysu.edu.cn, shulin@mail2.sysu.edu.cn; Z. Zheng,

Sun Yat-sen University, School of Software Engineering, Tangjiawan Town, Xiangzhou District, Zhuhai, China; e-mails:

zhzibin@mail.sysu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1556-4681/2023/11-ART40 $15.00

https://doi.org/10.1145/3624017

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

https://orcid.org/0009-0006-2441-2861
https://orcid.org/0000-0001-7689-0394
https://orcid.org/0000-0002-8149-0173
https://orcid.org/0000-0002-7048-3445
https://orcid.org/0000-0001-7468-8766
https://orcid.org/0000-0002-7878-4330
https://doi.org/10.1145/3624017
mailto:permissions@acm.org
https://doi.org/10.1145/3624017
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624017&domain=pdf&date_stamp=2023-11-13

40:2 T. Zhang et al.

Fig. 1. Motivating scenario in a financial system: Suppose there are three banks in the system, which are

marked with different colors. In the system, a graph is formed with customers as nodes and their transactions

as edges. People of the same color as the bank represent the bank’s target customers who shares the same

label, such as wealthy. Customers in different colors hold different labels, and banks desire to distinguish

them, which forms a typical node classification task. The dashed lines indicate the detection range of the

corresponding bank, some of which may overlap, since someone is likely to use multiple banks. The bank has

access to the relevant information about the nodes as well as the transactions between them in the detection

range, and most of the nodes are its target customers just as the records of customers A, B, and C storing

in Bank 3. However, some of its target customers may only make transfers in other banks without being

detected such as customer H. In such realistic system, different target markets give rise to the statistical

heterogeneity of the graph data among banks.

node representation learning without taking the data silo issues in the real world into account.

In a traditional data silo situation, the data is stored across several distributed parties and it is

only allowed to be accessed privately. As a result, solving the problem of how to collaborate on

separate graphs from local data owners while preserving privacy for the training of a high-quality

graph-based model is crucial.

Federated learning (FL), a technique that decouples the implementation of machine learning

from the requirement for direct data sharing, has shown great promise in training models collabo-

ratively while preserving data privacy [14]. The key idea of federated learning is to train a global

model in a central server with the contribution of local data owners (or clients). When dealing

with graph data, an intuitive idea is to combine naive federated algorithms with graph neural net-

works directly. Nevertheless, naive FL algorithms based on weight aggregation such as FedAvg do

not benefit from the structure information in the graph data and may have poor performance in

graph mining. To achieve an effective combination of GNN and FL that we term as federated graph

learning, it is essential to fully utilize the structural information of the graph data.

Moreover, federated graph learning suffers from the highly non-independent identically dis-

tributed (non-IID) problem. Statistical heterogeneity among clients is common in the task of

graph mining, which means a single global model might not generalize well on the local data of all

clients [13]. As a consequence, personalization needs to be integrated into federated graph learn-

ing instead of training a single consensus model. This approach, which involves clients adapting

the global model to their own dataset and training their local models for personalization, is known

as personalized federated graph learning.

Take a practical problem in the financial system as an example, shown in Figure 1. There are

multiple banks in a city’s financial system, each storing their records separately due to privacy

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

FedEgo: Privacy-preserving Personalized Federated Graph Learning with Ego-graphs 40:3

concerns and conflicts of interest. With customers as nodes and transactions as edges, a local

graph could be derived from the records stored in a bank’s database. Graph mining could be

further applied and one of the most frequently applied tasks may be node classification such as

distinguishing different kinds of customers. Furthermore, banks may also collaborate to improve

the generalization ability of their local models. In many cases, however, various banks may target

different markets and the distributed graph data are in a severe non-IID scenario, making the situa-

tion difficult. In other words, the local dataset of a bank can be regarded as a limited observation of

the real world, and the key incentive for a bank to participate in collaboration is to reduce its local

generalization error with the help of other banks’ data. In light of these observations, a bank needs

to achieve the tradeoff between the benefit from the collaboration and the disadvantage brought

by the potentially statistical heterogeneity, which is a typical case of personalized federated graph

learning.

In general, this realistic scenario poses three main challenges in personalized federated graph

learning:

— Challenge 1: How to make full use of the structure information of graph data during feder-

ated training? Since topological information is an indispensable part of graph mining, it is

important to integrate it into federated learning organically.

— Challenge 2: How to mitigate the issue of the potentially non-IID graph data in the fed-

erated learning framework? Observations from different angles of the real dataset lead to

severe non-IID graph data and prevent naive FL algorithms from performing well.

— Challenge 3: How to achieve an optimal tradeoff between the benefit and the disadvantages

of the collaboration? Under the potential non-IID scenario, the ideal situation for a client is

to utilize others’ data to compensate for its local dataset while minimizing the harm induced

by the statistical heterogeneity among each other.

The challenges outlined above motivate us to design FedEgo, a personalized federated graph

learning system based on ego-graphs. FedEgo is capable of handling the challenges above and

preserves privacy by maintaining the anonymity of the data in terms of both structure and features.

— To address challenge 1, it is feasible to view the graph as a family ofk-hop ego-graphs with

structures and node features. Ego-graph, a sampled subgraph with up to k-hop neighbors

of the center node, is a kind of useful information carrier and enables message passing of

structure and feature information in graph mining. FedEgo extracts topological information

from ego-graphs by applying GraphSAGE [10] over them. Importantly, ego-graphs ensure

that only local topological information is extracted from the sampled ego-graphs and that

the original structure is not recoverable by the server or other clients, which means that they

are structure-anonymous.

— To address challenge 2, we adopt a strategy of training a global model in the central server

to handle the non-IID graph data. Taking consideration of challenge 1, we seek to develop

a global model that can effectively capture the structural information contained within ego-

graphs. To this end, inspired by References [1, 8], we introduce a network composed of

reduction layers and personalization layers to exploit shared low-dimensional embeddings

and perform personalized graph mining, respectively. In FedEgo, the clients’ model consists

of both reduction layers and personalization layers for local training while the global model

in the server consists of only the personalization layers to distill information from the ego-

graphs in the global dataset. By applying Mixup [27, 28] within each batch in clients, mashed

ego-graphs are generated, which are later sent to the server and form the global dataset. In

the server, the ability of the global model to deal with non-IID graph data is developed by

training over the uploaded mashed ego-graphs. The mashed ego-graphs, which contain only

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

40:4 T. Zhang et al.

the mashed embedding and local structure, prevent the transmission of the raw data and

protect privacy, and thus they are further feature-anonymous.

— To address challenge 3, clients perform updates with the help of the global model. Clients

will follow the vanilla algorithm of FedAvg [16] in reduction layers to reach a consensus on

encrypting the ego-graphs. They then mix the local and global weights in personalization

layers according to an adaptive mixing coefficient. The mixing coefficient, which contributes

to achieving better personalization for each client, is adaptively determined by the the dif-

ference between the distribution of local and global datasets.

We validate FedEgo on the real-world datasets in non-IID settings to better simulate application

scenarios. Experimental results show that FedEgo significantly outperformed baseline methods,

thereby fully verifying the effectiveness of FedEgo. We summarized our main contribution as

follows:

— We introduce a novel personalized federated graph learning framework based on ego-graphs.

FedEgo makes full use of structure information of graph data by applying GraphSAGE over

ego-graphs.

— We apply Mixup over ego-graphs for privacy concerns and develop the global model’s ability

to capture structural information and deal with the non-IID graph data by training over the

uploaded mashed ego-graphs.

— We design a strategy to adaptively learn a personalized model for a tradeoff between the

benefit and disadvantage of collaboration.

— We conduct extensive experiments on widely used datasets and empirically demonstrate the

superior performance of FedEgo under non-IID scenarios.

2 RELATED WORK

2.1 Federated Learning on Graphs

Recently, federated learning on graphs has raised great interest, and several federated graph

frameworks have been proposed by leveraging the power of federated learning and graph neural

networks [6, 12, 19, 20, 23, 25, 29]. GraphFL [23] is a model-agnostic meta learning approach

designed for few-shot learning, and D-FedGNN [19] is a distributed federated graph framework

that enables client collaboration without a centralized server. FedSage+ [29], which trains a

missing neighbor generator to recover the missing edges cross clients, mainly targets distributed

subgraph systems that are not common in practice. FedGL [6] uploads prediction results and

embeddings for global information of nodes, while FedGCN [26] exchanges average information

about the node’s neighbors among clients. Both of them suffer from severe privacy problems,

since the server and others know whether a specific node is in a certain client’s local dataset.

FedEgo, by contrast, preserves privacy for node classification tasks in a realistic setting by keeping

the data anonymous in terms of structure and feature. Recent research DP-FedRec [20] applies

differential privacy and utilizes K-hop extensions to obtain extended graphs for federated learning.

DP-FedRec extends the existing intersection subgraph by using K-hop neighbor information, as

opposed to FedEgo, which constructs a K-hop ego-graph for each node. However, the commu-

nication cost of transmitting the extended graphs may be prohibitively high, and the original

structure of the local graph is exposed to others through the extended graphs, resulting in privacy

risks.

2.2 Personalized Federated Learning

Personalization in federated learning has attracted much attention and has been widely explored

in recent approaches [1, 9, 11, 13, 15]. Reference [1] proposes a neural network with base layers

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

FedEgo: Privacy-preserving Personalized Federated Graph Learning with Ego-graphs 40:5

Fig. 2. (a) Illustration of 1 hop ego-graph. (b) Illustration of the alignment and Mixup among a batch of ego-

graphs. The center nodes are aligned together and their neighbors are extended recursively. The reduction

embedding r and one-hot label y are averaged according to the alignment.

for federated averaging and personalization layers for personalization. Reference [8] is a further

extension of Reference [1] and obtains low-dimensional embedding to accelerate convergence.

Some other works [7, 13] borrow ideas from MAML, and Reference [13] considers federated

learning as an instance of MAML. Moreover, Reference [23] introduces MAML into the federated

graph learning framework and designs GraphFL for few-shot learning. Furthermore, methods

such as using a mixture of global and local models [9, 15], multi-task learning [22], and adding

proximal terms to perform local fine-tuning [11] have been proven effective for improving

the performance of personalized models. In contrast to existing work, our approach focuses

on achieving better personalization by considering the differences between local and global

distributions and providing theoretical justification for the proposed method.

3 PRELIMINARIES

3.1 Ego-graph

LetG = (V ,E) be a graph withN nodes, whereV = {v1, . . . ,vN } denotes the node set and E ⊆ V×V
denotes the edge set. Following References [2, 31], we have the definition of a k-hop ego-graph.

Definition 3.1. (k-hop ego-graph). A graph дv = {Vv ,Ev } is called a k-hop ego-graph centered

at node v if it has a k-layer centroid expansion such that the greatest shortest path rooted from vi

has length k , i.e., k = maxvi ∈V |S (v,vi) |, where S (v,vi) is the shortest path from v to vi and | · |
denotes the length of the path.

Given k , a depth-based representation of the graph can be described as a family of ego-graphs

G = {дvi
}Ni=1 [2, 31]. The label of each node is retained in the ego-graph, which is represented as

a one-hot vector. As useful information carriers, ego-graphs will be sampled in each client for the

training in FedEgo. In practice, we follow the method in GraphSAGE [10] and sample a fixed-size

set of neighbors in each layer for the nodes. Note that the sampled ego-graphs will be in a fixed

shape and can be trained independently of the original graph.

When training with the family of ego-graphs, we do not concern about the concrete information

in the original graph but only the local property. In this sense, there is no way of knowing where

the center node is located in the original graph and one could not restore the original graph through

the sampled ego-graphs. Therefore, the sampled ego-graphs are structure-anonymous.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

40:6 T. Zhang et al.

3.2 GraphSAGE

GraphSAGE [10] is a method applicable to inductive graph learning, with which we could enable

the information flow in ego-graphs. It focuses on the local property of the target node and

aggregates features from the neighborhood to obtain embedding for downstream tasks. Let h (l)
v

denote the embedding of node v in the layer l , and the convolution layer with a mean aggregator

can be defined as:

h (l)
v = σ (W (l) · h (l−1)

v +W (l) ·Mean({h (l−1)
u ,u ∈ N (v)})), (1)

withW (l) as the weight matrix and N (v) as the 1-hop neighbors ofv . In particular, h (0)
v denotes the

input features. For supervised node classification tasks, we use cross-entropy as the loss function.

Let (x ,y) denote the node samples with feature and label, fc : X → S is the map function from

feature space X to the label space S , 1y=c is the indicator function of label c ,W is the weight in the

whole model. Then, the cross-entropy loss could be formulated as:

�(W) = Ex,y∼P

⎡⎢⎢⎢⎢⎣
C∑

c=1

1y=c log fc (x ,W)
⎤⎥⎥⎥⎥⎦ =

C∑
c=1

P (y = c)Ex |y=c [log fc (x ,W)], (2)

where P represents the probability vector of data distribution and
∑C

c=1 P (y = c) = 1. The distribu-

tion vector P can be further obtained by following formula:

P =

∑
yone−hot

|N | , (3)

where yone−hot is the one-hot vector of label and |N | is the number of nodes.

3.3 Federated Learning

In federated learning, the main objective is to learn a global model by clients’ collaboration and a

typical implementation is FedAvg [16]. In FedAvg, clients perform local updates and global aver-

ages iteratively and finally learn a global model. Formally, we assume that there are N clients with

Wi as the local weight of client i . In a training epoch, the server first broadcasts the latest global

weightWд to all the clients. Subsequently, clients load the weightWi =Wд and then perform local

updates several times:

Wi =Wi − α∇Li (Wi). (4)

After that, the server averages the uploaded local parameters and obtains the new global model:

Wд =
1

N

N∑
i=1

Wi . (5)

The process is repeated for convergence and a global model is learned for prediction. FedAvg

aggregates information from models whereas it ignores the difference between clients. Previous

works show that it may perform poorly when it comes to severe non-IID situations [25].

3.4 Mixup

Mixup [28] is a data augmentation technique that applies linear combination over data samples to

generate additional data. In the federated framework, Yoon et al. [27] propose FedMix and apply

Mixup over samples within each batch. Formally, given a batch of n data samples {(xi ,yi)}ni=1,

FedMix constructs augmented data samples by averaging features and labels:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̃ =

∑n
i=1 xi

n

ỹ =

∑n
i=1 yi

n
.

(6)

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

FedEgo: Privacy-preserving Personalized Federated Graph Learning with Ego-graphs 40:7

Fig. 3. The detailed framework of FedEgo.

4 PROPOSED METHOD: FEDEGO

In FedEgo, we expect the server to be capable of capturing both structural and feature information

of non-IID graph data from clients. And then, with the help of the global model, clients update

their local model for better personalization. To this end, there are different network architectures

between clients and the server. Specifically, a client’s local model consists of reduction layers and

personalization layers, whereas there are only personalized layers in the server. Reduction layers

are designed to exploit shared low-dimensional embeddings among clients, while personalization

layers are used for personalized graph mining. To extend GraphSAGE over the ego-graphs, we

follow Reference [10] and sample a fixed-size set of neighbors for each given node. And then the

training of FedEgo can be mainly divided into local stage and global stage. (1) In the Local Stage,

clients feed their local ego-graphs into reduction layers and obtain the low-dimensional embed-

ding. Subsequently, Mixup is applied over ego-graphs to generate mashed ego-graphs within each

batch. Then, the embedding obtained from reduction layers will be further fed into personalization

layers. Eventually, each client calculates the loss and updates the parameters in reduction layers

and personalization layers. (2) In the Global Stage, clients upload parameters in reduction layers

and the mashed ego-graphs to the server for collaboration. The server aggregates the parameters

by applying FedAvg algorithm and updates the global personalization layers by training over the

mashed ego-graphs. After that, all the parameters are sent back to clients. Clients will then load the

reduction layers and update their personalization layers by mixing the local and global weight. The

framework of FedEgo is illustrated in Figure 3, and Algorithm 1 demonstrates the training process.

4.1 Local Stage

4.1.1 Reduction Layers: Multi-Layer Perception. In the federated framework, data distribution

between clients is in a severe non-IID situation, which gives rise to the difficulty to train a

central model. However, these heterogeneous data may share a common representation despite

having various labels [8], and hence reduction layers are proposed to capture the common low-

dimensional embeddings across clients, as shown in the green part of Figure 3. And the embedding

obtained by reduction layers, which we term reduction embedding, may facilitate subsequent

calculations while also protecting data privacy due to the reduction of dimensionality. Besides, it

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

40:8 T. Zhang et al.

ALGORITHM 1: The algorithm of FedEgo

Require: Clients number N , node feature matrix {Xi }, initialized weight in reduction layers and personal-

ization layers of each client Θi and Φi , initialized weight in personalization layers of the global model

Φд

Ensure: Model parameters for each client {Θi } and {Φi }
1: Clients sample k hop ego-graphs in the fixed shape from their local datasets and calculate local distribu-

tion vector Pi by Equation (3).

2: while not converge do

3: Local Stage:

4: for client i = 1 to N do in parallel

5: for each epoch do

6: for each batch do

7: for each node v within the batch with feature xv ∈ Xi do

8: rv = Θi (xv) // Local reduction layers

9: pv = Φi (rv) // Local personalization layers

10: end

11: // Generate a mashed ego-graph

12: Calculate the embedding and the label of each node in the mashed ego-graph by

Equation (8)

13: // Parameters update

14: Calculate loss �i by Equation (2)

15: Set Θi ← Θi − η∇�i , Φi ← Φi − η∇�i ,

16: end

17: end

18: end

19: Global Stage:

20: // Averaging in reduction layers

21: Clients send local weight in reduction layers Θi and Server averages the parameters by Θд =

∑N
i=1 Θi

N

22: // Training of the global model

23: Clients send all the mashed ego-graphs with embedding and label to Server

24: for each epoch do

25: for each batch do

26: for each node with mashed embedding r do

27: p = Φд (r) // Global personalization layers

28: end

29: // Parameters update

30: Calculate loss �д by Equation (2)

31: Set Φд ← Φд − η∇�д
32: end

33: end

34: // Parameters update for clients

35: Server calculates the gloal distribution vector Pд by Equation (3)

36: for client i = 1 to N do in parallel

37: Calculate EMDi and λi by Equation (14) and (15)

38: Set Θi ← Θд , Φi ← λi Φд + (1 − λi)Φi

39: end

40: end

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

FedEgo: Privacy-preserving Personalized Federated Graph Learning with Ego-graphs 40:9

has been observed that deeply stacking the layers often results in significantly worse performance

for GNNs, which is called over-smoothing [5]. To avoid such a problem, herein, we dig out

the reduction embedding using a Multi-Layer Perception, since 2-layer GNN will be applied in

personalization layers for graph mining. Formally, consider xv ∈ Rd as the d-dimension raw

feature of node v and a lr layers Perception, the hidden embedding can be calculated as follows:

r (l)
v = σ

(
W (l)

r · r (l−1)
v + b (l)

r

)
, (7)

whereW (l)
r and b (l)

r is the weight and the bias of layer l , respectively, σ is the activation function,

and r (l)
v represents the hidden embedding of node v obtained by layer l . Specifically, we take the

raw feature as input of the reduction layers and we have r (0)
v = xv . The final embedding r (lr)

v is

regarded as the reduction embedding. For convenience, we term the whole reduction layers as Θ.

4.1.2 Mashed Ego-graphs: Mixup within Each Batch. In FedEgo, clients will generate mashed

ego-graphs for the training of the global model and further send them to the server rather than

raw data. As mentioned above, all mashed ego-graphs uploaded are structure-anonymous, as it

only contains the local property rather than the whole graph. Therefore, the server has no way

of knowing the structure of the original graphs and whether a specific node exists in the local

dataset of a certain client merely according to the local topology. To further protect the privacy of

the client, we apply Mixup over the ego-graphs to make the feature indistinguishable to protect

the original node.

The mashed ego-graphs are in the same shape as the ego-graphs and can be obtained by mixing

up the reduction embedding of ego-graphs within each batch. As a popular data augmentation

technique for traditional data, Mixup, however, is not directly applicable to graph data because of

the alignment problem. The feature matrices of traditional data samples share the same dimension

and can be used for element-wise operations, while the irregularity of structures in graph data

limits the element-wise calculation and various ways to mix up may give rise to different impacts

on the training.

Mixup, however, is relatively easy to be applied over ego-graphs in the fixed shape. The number

of k-hop neighbors in such ego-graphs is only determined by k and the size of the neighbors set n.

For convenience, we sort the nodes based on its layer to assign each node a specific position and

obtain the position setsQi in the ith layers, i.e.,Q0 = {0},Q1 = {1, 2, . . .n},Q2 = {n+1,n+2, . . .n2},
and so on. The node in a specific position connects to its corresponding neighbors in the next layer.

For example, the neighbors of node 1 in the second layer can be represented as {n+1,n+2, . . . 2n}.
The position within the same layer can be assigned arbitrarily as long as the special connectivity

between layers is maintained.

To apply Mixup over ego-graphs, we could first align the center nodes, i.e., the node 0 of all

the ego-graphs within a batch together and then recursively extend their neighbors to assign each

node a specific position in its corresponding layer. Then, the embedding of each position in the

mashed ego-graph can be obtained by simply averaging the embedding of the corresponding nodes

according to the alignment, which is illustrated in Figure 2(b). Formally, given the embedding and

the one-hot label of the jth position in the ith ego-graphs r i
j and yi

j according to the alignment, we

obtain the mashed embedding r j as well as the label yj of the nodes in the mashed ego-graphs:

r j =

∑n
i=1 r

i
j

n
,yj =

∑n
i=1 y

i
j

n
. (8)

The mashed ego-graphs average the reduction embedding to prevent privacy leakage, making

them feature-anonymous in addition to structure-anonymous. In other words, the mashed ego-

graphs can be considered to be virtual samples generated from the original distribution and protect

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

40:10 T. Zhang et al.

the original nodes from being detected by attackers. Besides, there are lots of ways to align ego-

graphs, though, all of them have the same effect on a specific GNN model according to Theorem 4.1.

Theorem 4.1. Mashed ego-graphs generated from all sorts of alignments are equivalent for the

training of linear GraphSAGE layers without activation functions. If there are two different alignments

A and B, the final embedding of the center node after aggregation under alignment A and B will be

the same.

The detailed proof of Theorem 4.1 is provided in Appendix A. As Theorem 4.1 shows, linear

GraphSAGE layers avoid the impact that different alignments bring, and hence they could be used

as the personalization layers without incurring bias. However, the unbiased estimate of the embed-

ding may not always guarantee better performance when dealing with complex scenarios, such

as the distribution of highly non-IID data among clients. Due to the high statistical heterogeneity,

activation function may be preferable in the personalization layers, since it empowers the model’s

ability to learn complex patterns while also introducing bias that will alleviate the severe non-IID

issues. In developments test, we found a slight improvement of GraphSAGE with activation over

the linear one and thus focus on the former for the rest of our experiments.

4.1.3 Personalization Layers: GraphSAGE over Ego-graphs and Classification. Once the reduc-

tion embedding is obtained, we further feed the ego-graph into linear GraphSAGE layers to for-

ward implement graph mining, as can be seen in the pink part of Figure 3. Formally, we have the

personalization layers:

p (l)
v = �

W
(l)

p · p (l−1)
v +W (l)

p ·
∑

u ∈N (v) p
(l−1)
u

|N (v) |
�
� , (9)

where p (l)
v represents the hidden embedding of nodev obtained by layer l . And we have p (0)

v = r
(lr)
v ,

i.e., using the reduction embedding as input. Moreover, it is worth noting that we use linear Graph-

SAGE layers without activation functions between them. After that, predictions are generated by

a subsequent linear classifier with a softmax function, and the loss is calculated eventually. For

convenience, we term the whole personalization layer as Φ.

4.2 Global Stage

4.2.1 Global Training. In the global stage, the server trains a global model over the mashed ego-

graphs uploaded by clients and updates the parameters in the global model. There exist the same

personalization layers in the server as in clients and we have GNN layers defined like Equation (9)

with a classifier in the global model:

p (l)
v = σ �

W
(l)

д · p (l−1)
u +W (l)

д ·
∑

u ∈N (v) p
(l−1)
u

|N (v) |
�
� , (10)

whereW (l)
д denotes the lth layer global personalization layers weight.

When considering the communication cost, another variant of FedEgo is to replace the reduc-

tion layers with GNN and the personalization layers with MLP. An incentive in this variant is that

clients simply need to upload their reduction embedding of the center nodes instead of the struc-

ture in the mashed ego-graphs. However, the information flow of topological structure is implicit

in the form of the reduction embedding, making it rather challenging for the server to train, espe-

cially in the case of highly non-IID data. Averaging the GNN parameters in the reduction layers

may also be inappropriate, since different data distribution among clients contributes to various

node connection patterns. Consequently, clients will receive limited or even negative help because

of the poor collaboration.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

FedEgo: Privacy-preserving Personalized Federated Graph Learning with Ego-graphs 40:11

When using the GNN layers as the personalization layers, the generalization ability of the global

model is obviously better than any local one because of the access to the encrypted data among

all clients. After that, clients perform the following updates to enhance the performance of their

local models:

4.2.2 Averaging in Reduction Layers. Aiming at exploiting shared representations among

clients, the parameters in reduction layers are updated by coordinate-wise weight averaging. For-

mally, we have the following update in reduction layers:

Θд =
1

N

N∑
i=1

Θi , (11)

Θi = Θд , (12)

where Θi represents the reduction layers weights in client i and Θд denotes averaged one. With

the update in reduction layers, clients reach a consensus to some degree even if graph data from

their datasets are potentially non-IID. In other words, clients encrypt their raw data in the same

way and project their data into a low-dimensional space.

4.2.3 Mixing in Personalization Layers. When updating parameters in personalization layers,

clients will mix local and global weight to achieve the tradeoff of advantages and drawbacks of

the global model. Given a mixing coefficient λi for client i , we update the personalization layers

as follows:

Φi = λi · Φд + (1 − λi) · Φi , (13)

where Φi represents the personalization layers weights in client i and Φд denotes global one.

Intuitively, the strategy to select mixing coefficient hinges on the diversity between local and

global distributions. With great diversity, the mixing coefficient is expected to be large in that

the client tends to gain more from the global model to correct its deviations and reduce the

local generalization error. Otherwise, λ needs to be small for better personalization of the local

model.

4.2.4 Adaptive Mixing Coefficient for Each Client. It is obvious that a fixed λ is inappropriate

for all the clients due to the potential statistical heterogeneity. We further propose an adaptive

strategy to select λ with theoretical analysis, thereby adjusting λ for each client to achieve

better personalization. For convenience, we termed the model weights in clients and the server

as local and global weight, respectively. First, following Reference [30], a metric is designed in

Definition 4.2 to measure the distance between local and global weights. We only analyze the

personalization layers here, since the reduction layers are frozen by averaging. Then, we bound

the weight divergence in Theorem 4.3.

Definition 4.2. Let Φi denote the local weight in personalization layers on client i , Φд denote the

global one, then the weight divergence WDi is defined as the distance between local and global

weight:WDi = ‖
Φi−Φд

Φд
‖.

Theorem 4.3. Given N clients with K samples of nodes (xk ,yk)K
k=1

drawn i.i.d from local data

distribution Pi for client i ∈ [N] and the global data distribution Pд . Let training SGD update steps

for clients and server be the same Ec = Es = t − 1. Consider the update in personalization layers as

a separate step and it is conducted every t steps. The local weight of client i and the global weight

in the t th step of the T th epoch are denoted as Φ(T)
i,t and Φ(T)

д,t , respectively. Let ∇wEx |y=c log fc (x ,w)
be Lx |y=c -Lipschitz for each class c ∈ [C] and the mixing coefficient λi , then the bound of weight

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

40:12 T. Zhang et al.

divergence after T th update is formulated as follows:

‖Φ(T)
i,t − Φ(T)

д,t ‖ ≤(1 − λi)at−1‖Φ(T−1)
i,t − Φ(T−1)

д,t ‖

+ η(1 − λi)
C∑

c=1

‖Pi (y = c) − Pд (y = c)‖ ��
t−2∑
j=0

ajдmax (Φ(T)
д,t−2−j)

��
� ,

where дmax (w) = maxC
c=1 ‖∇ΦEx |y=c log fc (x ,w)‖ and a = 1 + η maxC

c=1 Lx |y=c .

The proof is provided in Appendix B. The second part on the right side includes the difference

between the distribution of local and global datasets that is mainly reflected in
∑C

c=1 ‖Pi (y = c) −
Pд (y = c)‖, which is termed as earth mover distance (EMD). EMD is correlated with λi and

thus we can fine-tune λi to affect the impact of EMD and optimize the weight divergence. When

the difference of local and global distribution is large (larger EMD), a larger λi should be selected

to pull the client closer to the global model. Otherwise, λi should be small to fully achieve the

personalization. Then, we can obtain EMDi of client i:

EMDi =

C∑
c=1

‖Pi (y = c) − Pд (y = c)‖. (14)

We further provide a formula to adaptively select λ by introducing a hyperparameter γ in

Equation (15). It ensures 1 − λi to be negatively correlated with EMDi and λi varies from 0 to 1

when EMDi increases:

λi =

(EMDi

2

)γ

. (15)

Both the local distribution vector Pi and the global one Pд can be calculated by Equation (3)

even though there are only averaged data in the server. We could pre-compute Pi of each client and

update Pд as well as EMDi in the global stage. The mixing coefficient is dynamically determined by

the EMDi and helps clients to adjust the update of their local models to achieve best personalization

performance.

4.3 Privacy Risks and Communication Cost Analysis

In light of previous approaches, it is a common practice for clients to share information of its lo-

cal distribution with each other. In other words, clients should provide more useful knowledge

through expressive intermediate results in addition to the shared parameters and gradients. In

FedSage [29], the neighbor generator with high accuracy develops each client’s ability to predict

the node feature from other client’s data distribution. In FedMix [27], clients exchange averaged

images as additional data and have access to other client’s data distribution to some degree. In

FedGCN [26], model exchanges the average information about the node’s neighbors among clients.

Thereby, it is an important concern to determine in what way should the client’s local data dis-

tribution be presented to others. In FedEgo, clients upload not only the parameters but also the

mashed ego-graphs as information carriers, and hence the privacy risks and whether the additional

communication cost is affordable are significant issues. A key factor that affects the privacy risks

and the communication cost is the batch size.

With a low batch size, more mashed ego-graphs result in a larger communication cost, and

more sensitive information of original data will pass over, yielding the problem of privacy leakage.

However, in the other extreme, a large batch size leads to a significant amount of information loss

and poor performance of the global model. Based on the analysis above, appropriate batch size is

exactly a tradeoff of privacy protection and client collaboration. Adding Gaussian noise, which is

associated with differential privacy [17], is another typical practice of providing additional privacy.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

FedEgo: Privacy-preserving Personalized Federated Graph Learning with Ego-graphs 40:13

Table 1. The Statistics and Relevant Setting of Four Datasets

Dataset |V| |E| #C N αдlobal αlocal

Cora 2,708 5,429 7 5 0.3 0.3

Citeseer 3,312 4,715 6 5 0.3 0.3

Wiki 17,716 52,867 4 10 0.3 0.2

CoraFull 19,793 63,421 70 10 0.3 0.3

FedDBLP 52,202 271,054 4 7 Default Split Default Split

|V| and |E| show the number of node and the edges, respectively. #C denotes the

number of classes. N indicates the number of clients chosen in the experiments.

αдlobal and αlocal are the sample rate of the global test dataset and local dataset,

respectively. lr is the learning rate of the Adam optimizer.

By adding Gaussian noise into the mashed ego-graphs, we find that FedEgo is robust to the noises

with a small decline in the performance.

Extensive experiments have been produced to seek a best tradeoff of privacy and communication

cost over batch size and prove the robustness of FedEgo.

5 EXPERIMENT

5.1 Datasets and Experimental Settings

We conduct our experiments on four real datasets: Cora [21], Citeseer [21], CoraFull [4], Wiki

[18], and FedDBLP [24]. Table 1 shows the details of the datasets and the relevant settings. In our

experiments, we construct a local dataset for each client and a global dataset for the final test, which

are used for verifying the personalization and the generalization ability of the model, respectively.

We first sample nodes for global dataset and delete them from the original dataset, leaving the

remaining nodes for clients’ local dataset. To construct a label distribution skew scenario, the

nodes are divided into different sets, depending on the label. After that each client randomly selects

3 labels as its major node labels and samples nodes from the corresponding sets to compose 80%

nodes in its local dataset. Random unselected nodes will be added as the remaining 20% nodes. In

each client, 300 nodes are sampled for testing and 20% nodes for validating, leaving other nodes for

training. We choose 2 hop neighbors for each node and set the number of neighbors to be 6 when

sampling ego-graphs.

5.2 Comparison Methods

We compare FedEgo with the following methods:

— Local Only: In this method, each client trains its model by feeding local data independently.

— FedAvg: FedAvg [16] applies the averaging method over the weight parameters to obtain

a global model. It is a simple but effective way to cope with the non-IID scenario. In this

method, the parameters are averaged in both the reductions and the personalization layers.

— FedProx: FedProx [14] tackles data heterogeneity by adding a proximal term to the loss. We

apply the adaptive FedProx loss coefficient in [0.001,0.01, 0.1,1] based on the fluctuation of

the loss.

— GraphFL: GraphFL [23] is a method designed for few-shot learning based on model-

agnostic meta-learning (MAML) and addresses the problem of non-IID graph data be-

tween clients. We follow the original setting in Reference [23] and use 100 nodes for both

the support and query set in GraphFL.

— D-FedGNN: D-FedGNN [19] is a distributed federated graph framework based on the

weighted communication topology among clients. We follow the setting in Reference [19]

and use the standard ring network for aggregation.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

40:14 T. Zhang et al.

— FedGCN: In FedGCN [26], clients communicate with each other to exchange average in-

formation about the node’s neighbors. It suffers from severe privacy problems, since others

know the nodes in a certain client’s local dataset. We follow the original setting in Reference

[26] and 2 GCN layers for FedGCN.

— FedSage: In FedSage [29], clients collaborate and apply the FedAvg over the GraphSAGE

framework. FedSage is specifically designed for subgraph federated learning, and we follow

the original architectures without implementing the reduction layers and personalization

layers.

— FedSage+: FedSage+[29] improves upon FedSage by training a neighbor generator on top

of it. This addition enhances the model’s ability to capture hidden relationships across dis-

tributed local graphs.

The models are in the same structure with 1 layer MLP as the reduction layers, 2 layers Graph-

SAGE with activation function as the personalization layers, followed by 1 fully connected layer

as the classifier. We choose Relu as the activation function and Adam as the optimizer. Besides,

the amount of the mashed ego-graphs and the additional communication cost are both strongly

influenced by batch size, which is preferred to be 32 based on observations in the development test

5.8. During the clients’ training, nodes will be trained in 5 mini-batches for 5 epochs each round.

In FedEgo, the server will utilize ego-graphs uploaded by clients for training for 5 epochs each

round. We execute all experiments 4 times and the averaged results are reported.1

5.3 Label-skew Scenarios Analysis

5.3.1 Personalization Ability. The F1 score in the local test given in Table 2 illustrates the per-

sonalization ability of each method under severe non-IID scenarios. It is a clear finding that the

result in the local test is much higher compared to the global test, primarily because of the same dis-

tribution of the testing and training data. Furthermore, FedEgo, FedAvg, FedProx, and D-FedGNN

benefit from the collaboration on all datasets and enhance the personalization ability of local mod-

els. FedSage+ and FedSage achieve similar results in the local test, but both are lower than FedEgo

most of the time. D-FedGNN performs better than FedAvg, since the average merely with local

neighbors mitigates the issues of non-IID to some degree. For FedEgo, there is only a slight perfor-

mance improvement than FedAvg, which is caused by the label skew scenario and the information

from others only compensates for a client’s training to a limited extent. Interestingly, GraphFL

performs worse than other FL methods in all cases, owing to the fact that it is designed for few-

shot learning and does not extract enough useful information under the severe label distribution

skew scenario. Similarly, FedGCN is not suitable for non-IID scenarios and is no match for the

local training when it comes to enormous data, as the results on Wiki and CoraFull demonstrate.

5.3.2 Generalization Ability. As can be seen from the result in Table 3, the most striking ob-

servation emerging from the comparison is that FedEgo consistently outperforms other methods

and improves the generalization ability of clients’ local models. With updates to the reduction and

personalization layers, clients achieve approximately an 11%–15% improvement in performance

compared to local training. The remarkable improvement indicates that FedEgo can facilitate client

collaboration and address non-IID graph data.

FedSage demonstrates noticeable improvements over local training, while FedSage+ gains a

little boost further from the neighbor generator, which is consistent with the original results

in Reference [29]. Interestingly, FedSage+ experiences out-of-memory errors when training

over large datasets such as CoraFull, due to enormous virtual nodes generated by its neighbor

1Code available at https://github.com/FedEgo/FedEgo

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

https://github.com/FedEgo/FedEgo

FedEgo: Privacy-preserving Personalized Federated Graph Learning with Ego-graphs 40:15

Table 2. F1 Score for Node Classification in the Local Test under Label-skew Scenarios

Dataset Local Only FedAvg FedProx GraphFL D-FedGNN FedGCN FedSage FedSage+ FedEgo
Cora 0.8437 0.9473 0.9483 0.867 0.9503 0.8784 0.9507 0.952 0.9577

(±0.0039) (±0.0012) (±0.0019) (±0.0029) (±0.0017) (±0.0006) (±0.0009) (±0.0008) (±0.0012)
Citeseer 0.7617 0.918 0.918 0.755 0.9193 0.8967 0.913 0.9137 0.9210

(±0.0005) (±0.0029) (±0.0014) (±0.0014) (±0.0005) (±0.0008) (±0.0008) (±0.0005) (±0.0024)
Wiki 0.8728 0.9258 0.9232 0.8088 0.92 0.817 0.9223 0.9246 0.9191

(±0.0141) (±0.0101) (±0.0096) (±0.0069) (±0.0097) (±0.0040) (±0.0083) (±0.0075) (±0.0077)
CoraFull 0.6402 0.874 0.873 0.477 0.8837 0.8466 0.881 Out Of 0.8972

(±0.0002) (±0.0010) (±0.0009) (±0.0017) (±0.0003) (±0.0025) (±0.0003) Memory (±0.0008)

Table 3. F1 Score for Node Classification in the Global Test under Label-skew Scenarios

Dataset Local Only FedAvg FedProx GraphFL D-FedGNN FedGCN FedSage FedSage+ FedEgo
Cora 0.6985 0.7706 0.7697 0.7346 0.7865 0.6933 0.7926 0.7848 0.8016

(±0.0014) (±0.0033) (±0.0037) (±0.0027) (±0.0022) (±0.0007) (±0.0018) (±0.0026) (±0.0019)
Citeseer 0.6125 0.6941 0.6924 0.6327 0.7049 0.6614 0.7055 0.7071 0.7200

(±0.0003) (±0.0058) (±0.0038) (±0.0070) (±0.0055) (±0.0009) (±0.0011) (±0.0012) (±0.0015)
Wiki 0.696 0.7856 0.7851 0.7112 0.7960 0.4428 0.7839 0.7849 0.8126

(±0.0113) (±0.0020) (±0.0034) (±0.0061) (±0.0014) (±0.0310) (±0.0006) (±0.0001) (±0.0100)
CoraFull 0.4905 0.5351 0.5336 0.3328 0.5615 0.4777 0.599 Out Of 0.6221

(±0.0006) (±0.0045) (±0.0050) (±0.0032) (±0.0011) (±0.0005) (±0.0006) Memory (±0.0006)

generator. Additionally, FedSage+ generates neighbors with huge feature dimensions identical

to the original node, which is not practical or affordable in real-world scenarios due to privacy

concerns and memory costs.

Similar to FedProx, FedAvg provides a boost to some amount, whereas it still falls short of

FedEgo. Clients benefit from collaboration in the reduction and personalization layers, as evi-

denced by the gap between FedAvg and local training. Besides, D-FedGNN performs slightly better

than FedAvg due to its unique aggregation. Compared to FedAvg, FedEgo used a personalized pat-

tern rather than averaging updates in personalization layers. FedEgo significantly exceeds FedAvg

and D-FedGNN, implying that a mixture of the local and global models is far superior to a simple

average in the severe non-IID scenario. GraphFL and FedGCN suffer from the same issue men-

tioned above and perform poorly in all cases.

5.4 Community Clustering Scenarios Analysis

Constructing federated graph datasets by splitting the global graph via community clustering is a

common practice. Such methods rely on the assumption that nodes within a cluster have a higher

degree of interaction than nodes across different clusters. When creating federated graph datasets,

community detection algorithms are applied to extract communities from large networks. These

clusters are then assigned to the clients to preserve the general graph structure. The Louvain

method [3] is a popular clustering method that maximizes the modularity of the split clusters

and is well-suited for community detection. In this study, we use the Louvain community_splitter

introduced by FedDBLP [24] and leave the nodes in a single cluster as the global test.

5.4.1 Personalization Ability. We introduce the FedDBLP dataset in the community clustering

scenarios, and the results of it are compatible to other datasets. The fact that the performance of

model decreases significantly stands out in the result (Table 4), indicating that the local structure

of the global graph captured by the community detection algorithm may not always be easy for

GNNs to train and study.

FedEgo still performs outstandingly in the local test and outperforms both FedSage and FedSage+

by a large margin. It is noteworthy that FedGCN shows remarkable results in the local test while

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

40:16 T. Zhang et al.

Table 4. F1 Score for Node Classification in the Local Test under Community Clustering Scenarios

Dataset Local Only FedAvg FedProx GraphFL D-FedGNN FedGCN FedSage FedSage+ FedEgo
Cora 0.4473 0.7107 0.7083 0.639 0.71 0.7287 0.6963 0.6960 0.7287

(±0.0005) (±0.0012) (±0.0050) (±0.0037) (±0.0014) (±0.0003) (±0.0031) (±0.0014) (±0.0041)
Citeseer 0.4770 0.6947 0.6953 0.5997 0.702 0.7951 0.677 0.6877 0.7153

(±0.0051) (±0.0017) (±0.0017) (±0.0019) (±0.0008) (±0.0003) (±0.0022) (±0.0012) (±0.0012)
Wiki 0.7373 0.7986 0.7973 0.6843 0.7999 0.7265 0.7983 0.797 0.8128

(±0.0073) (±0.0030) (±0.0020) (±0.0081) (±0.0010) (±0.0010) (±0.0010) (±0.0023) (±0.0013)
CoraFull 0.2318 0.3904 0.3924 0.1809 0.5378 0.7202 0.4962 Out Of 0.5113

(±0.0089) (±0.0021) (±0.0069) (±0.0088) (±0.1268) (±0.0005) (±0.0023) Memory (±0.0021)
FedDBLP 0.7413 0.7765 0.7773 0.6506 0.7684 0.8383 0.7802 0.7807 0.7851

(±0.0018) (±0.0014) (±0.0010) (±0.0038) (±0.0036) (±0.0004) (±0.0006) (±0.0017) (±0.0012)

Table 5. F1 Score for Node Classification in the Global Test under Community Clustering Scenarios

Dataset Local Only FedAvg FedProx GraphFL D-FedGNN FedGCN FedSage FedSage+ FedEgo
Cora 0.5492 0.728 0.7275 0.6653 0.7355 0.6229 0.7173 0.7312 0.7536

(±0.0013) (±0.0024) (±0.0023) (±0.0042) (±0.0006) (±0.0003) (±0.0017) (±0.0022) (±0.0018)
Citeseer 0.5505 0.6738 0.6747 0.6174 0.6847 0.6071 0.6754 0.6755 0.6921

(±0.0027) (±0.0047) (±0.0026) (±0.0016) (±0.0015) (±0.0016) (±0.0002) (±0.0011) (±0.0023)
Wiki 0.7393 0.8019 0.8038 0.6912 0.8008 0.6704 0.8059 0.8022 0.8143

(±0.0068) (±0.0053) (±0.0052) (±0.0062) (±0.0049) (±0.0045) (±0.0031) (±0.0004) (±0.0012)
CoraFull 0.2548 0.3924 0.3934 0.1585 0.3794 0.2735 0.4785 Out Of 0.4906

(±0.0014) (±0.0032) (±0.0008) (±0.0041) (±0.0751) (±0.0002) (±0.0016) Memory (±0.0001)
FedDBLP 0.6654 0.8124 0.8151 0.8071 0.8172 0.6313 0.8173 0.8204 0.8285

(±0.0033) (±0.0011) (±0.0018) (±0.0015) (±0.0014) (±0.0004) (±0.0011) (±0.0001) (±0.0005)

it performs very poorly in the global test and even lower than local training in some cases. We

hypothesize that this is because FedGCN is not able to model the connection between nodes across

different graphs and thus focuses on the nodes within the local datasets. Therefore, both FedGCN

and D-FedGNN lack the generalization ability over the global test and cannot generalize well to

the ground truth distribution. And the performance of other methods is consistent with the results

obtained from the label-skew scenarios.

5.4.2 Generalization Ability. The results in the global test under the community clustering sce-

narios are shown in Table 5. FedEgo continues to achieve state-of-the-art results in the global test,

surpassing FedSage by 1.2%–3.7% and FedSage+ by 0.9%–1.2%. It is worth noting that while FedAvg

and FedProx perform comparably to FedSage in some cases, they still fall short of FedSage+. The

results of other methods are consistent with the conclusion drawn from the label-skew scenarios.

5.5 The Effort of Statistical Heterogeneity

The performance of FedAvg and FedEgo is heavily influenced by the statistical heterogeneity

among clients that is controlled by the major node rate. With a larger major node rate, clients

tend to have more nodes in the same classes, leading to a higher statistical heterogeneity. Accord-

ing to this, we vary the major node rate and provide the results in Table 6. Unsurprisingly, the

generalization ability of both FedEgo and FedAvg reduces as the major node rate becomes larger.

Perhaps more surprisingly, the increase in major node rate improves the personalization ability to

some level. In this case, more nodes in the local dataset will share the same labels and the pattern

of interconnections between nodes becomes relatively constant and easy to learn.

5.6 Ablation Study

To verify the effectiveness of Mixup, we undertake a comparison method called FedEgo w/o Mixup,

wherein clients upload the first ego-graph within a batch to the server rather than the mashed

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

FedEgo: Privacy-preserving Personalized Federated Graph Learning with Ego-graphs 40:17

Table 6. F1 Score on Wiki under Different Major Node Rates

Global Test Local Test

Major Node Rate 0.0 0.3 0.8 0.0 0.3 0.8

FedAvg 0.803 0.800 0.785 0.907 0.906 0.922

FedEgo 0.823 0.826 0.818 0.903 0.907 0.926

Table 7. Comparison between FedEgo, FedEgo-Linear, and

FedEgo w/o Mixup

Global Test Local Test

Methods Cora Citeseer Cora Citeseer

FedEgo w/o Mixup 0.783 0.717 0.951 0.912

FedEgo-Linear 0.793 0.717 0.958 0.918

FedEgo 0.794 0.727 0.959 0.920

ego-graphs. Note that it is not feasible to do so in real scenarios, since the transmission of raw ego-

graphs may result in the risk of privacy leakage. We also compare FedEgo with its linear variant,

denoted as FedEgo-Linear, to evaluate the impact of the activation function in the personaliza-

tion layers. FedEgo-Linear guarantees unbiased estimate of the center nodes’ embedding, whereas

FedEgo applies activation function to learn more complex patterns in the data.

As the result in Table 7 indicates, Mixup improves both the generalization ability and person-

alization ability of the model while preserving privacy. The reason is that the graph data among

clients are severely non-IID and the virtual samples generated by Mixup can be considered as

the clients’ exploration of the unknown distribution in the real-world dataset, thereby improving

the robustness of the model. By comparing FedEgo with FedEgo w/o Mixup, we can also infer

that structural information is still highly retained in the mashed ego-graphs after Mixup is

applied. The averaging operation in Mixup extracts an essential part of the structural information,

which facilitates the training in the server and results in better performance of the model.

Further, we observe that the performance marginally decreases without activation function in the

personalization layers, which indicates that the model does not necessarily suffer from the bias

introduced by the activation function, particularly in the case of extremely non-IID scenario.

To further figure out whether it is worthwhile to build ego-graphs and verify the effective-

ness of reduction layers and personalization layers, we compare FedEgo with three ablation

methods: (1) FedEgo w/o EGO: In this method, we replace the reduction layers with GNN and

the personalization layers with MLP. In this case, graph mining is performed locally and only

the reduction embedding needs to be uploaded rather than the explicit structure of the mashed

ego-graphs. (2) FedEgo w/o RL: In this method, clients will only update their personalization

layers without performing the averaging updates in reduction layers. In this case, clients will

encrypt the graph data in various ways, making it difficult to train the global model in the

server. (3) FedEgo w/o PL: In this method, clients will only update their reduction layers without

performing the mixing update in personalization layers. In this case, clients will not receive the

help of the global model but only benefit from averaging update in reduction layers. Moreover,

we also include FedAvg, since FedAvg is an averaging version of FedEgo w/o PL compared to

FedEgo.

The poor performance of FedEgo w/o EGO, as can be seen from Figure 4, demonstrates the

necessity to upload mashed ego-graphs for structural information flow in the federated frame-

work. Without the mashed ego-graphs, it is rather difficult for the server to capture the structural

information solely from the reduction embedding and further provide proper help for clients.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

40:18 T. Zhang et al.

Fig. 4. Ablation study on Cora (a,b) and Citeseer (c,d).

Fig. 5. The visualization of weight divergence on Wiki.

Moreover, it is evidently clear that reduction layers play a more important part in enhancing the

performance. Unsurprisingly, the removal of the averaging update in reduction layers hinders

clients from encrypting the ego-graphs in the same way, and the mashed ego-graphs uploaded

may be even harmful to the global model in early training. Besides, there is still a significant

difference between FedEgo w/o PL and FedEgo, demonstrating the effectiveness of mixing updates

in personalization layers. In the case of FedAvg, it requires the lowest convergence time due to

its simple aggregation pattern. The slight gap between FedAvg and FedEgo w/o PL verifies the

benefit brought by the averaging update in personalization layers, whereas the performance of

FedAvg begins to decline after around 15 epochs before stabilizing in the global test. In the local

test, however, the F1 score of FedAvg continues to increase until the end. As a result, FedAvg is

inclined to improve clients’ personalization ability at the expense of generalization ability. And

finally, the observed difference between FedAvg and FedEgo in the local test is limited while there

is a large gap in the global test, as we have discussed before.

5.7 Parameter Study

To have a better understanding of the hyperparameter γ , we estimate the weight divergence of

each client with the varying γ . As shown in Figure 5, the global weight is fixed at the center of the

circle, while scattered points represent the local weight of clients, and the distance to the center

indicates the weight divergence. Circles with the same center but different radii are also plotted

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

FedEgo: Privacy-preserving Personalized Federated Graph Learning with Ego-graphs 40:19

Table 8. F1 Score on CoraFull with Different γ

γ 0.125 0.25 0.375 0.5 0.625 0.75 0.875

Local Test 0.899 0.901 0.9 0.901 0.899 0.902 0.899

Global Test 0.652 0.653 0.648 0.649 0.649 0.648 0.646

Table 9. Communication Cost Analysis for 200 Epochs with Various Batch Sizes on Cora and Citeseer

Cora Citeseer
FedAvg FedEgo FedAvg FedEgo

Batch Size 32 8 16 32 64 128 32 8 16 32 64 128
Global Test 0.769 0.797 0.794 0.793 0.792 0.764 0.701 0.724 0.724 0.725 0.72 0.711
Local Test 0.952 0.958 0.959 0.958 0.955 0.945 0.917 0.92 0.919 0.918 0.918 0.917
Time (mins) 10.190 57.674 38.775 20.661 15.6 10.201 11.679 90.539 41.525 32.742 13.89 6.307
Ego-graphs Cost (MB) 0 6,071 3,055 1,545 790 425 0 6,895 3,477 1,769 899 471
Parameters Cost (MB) 6,819 2,801 2,801 2,801 2,801 2,801 11,250 7,234 7,234 7,234 7,234 7,234
Total Cost (MB) 6,819 8,872 5,856 4,346 3,591 3,226 11,250 14,129 10,711 9,003 8,133 7,705

for reference. As we can see from the result, the weight divergence is affected by γ and becomes

larger as γ increases. According to Equation (15), λ is negatively correlated with γ , and thus the

weight divergence increases as λ decreases, which is plausible support of Theorem 4.1. In addition

to the visualization of weight divergence, we provide the F1 score over different values of γ in

Table 8. With a fine-tuned γ , the adaptive strategy is capable of discovering the best λ for each

client. Note that the optimal γ for the generalization ability and the personalization ability are not

always the same due to the statistical heterogeneity. With a relatively large deviation from the

global ground-truth, reducing clients’ generalization error will likely degrade their performance

in the local dataset.

5.8 Analysis over Batch Size

We conduct extensive experiments and evaluate the communication cost in terms of megabytes

(MB). The results are provided under various batch sizes in Table 9.

The fact that smaller batches lead to higher performance and larger communication cost stands

out in the results. The high quality of the uploaded mashed ego-graphs contributes to the improve-

ment, while the communication cost and training over more data make the training time longer.

The improvement of reducing batch size decreases as the batch size becomes smaller while the

communication overhead, however, will be doubled due to more batches in the local training. Fur-

thermore, a smaller batch size fails to meet the need for privacy protection. Therefore, we believe

that selecting 32 as the batch size is a fair tradeoff based on the results. Additionally, the weight

parameters mainly account for the communication cost with such a proper batch size, and it is

acceptable to promote the performance at the expense of the additional cost.

5.9 Preserving Privacy with Gaussian Noise

As stated in Section 4.3, using a small batch size will result in privacy risks. To mitigate these

issues, it is a common practice to add random Gaussian noise to the data to mask sensitive

information while still preserving the overall statistical properties of the data, according to

the knowledge of differential privacy [17]. Results obtained from both label-skew scenarios

(Table 10) and the community clustering scenarios (Table 11) demonstrate the high robustness

of FedEgo with respect to the Gaussian noise. Importantly, FedEgo still outperforms previous

methods like FedSage+ when the standard deviation σ is relatively large. In other words, we could

combine FedEgo with the DP-related techniques to further preserve privacy without significantly

compromising model performance.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

40:20 T. Zhang et al.

Table 10. Performance of FedEgo with Gaussian Noise under Label-skew Scenarios

Global Test Local Test

σ Cora Citeseer Wiki CoraFull Cora Citeseer Wiki CoraFull

0 0.804 0.718 0.826 0.621 0.959 0.924 0.908 0.898

0.05 0.803 0.726 0.825 0.623 0.957 0.918 0.901 0.894

0.075 0.797 0.722 0.824 0.62 0.958 0.919 0.897 0.89

0.15 0.796 0.714 0.815 0.612 0.957 0.919 0.889 0.884

0.3 0.795 0.702 0.807 0.598 0.95 0.911 0.881 0.873

σ refers to the standard deviation of Gaussian noise.

Table 11. Performance of FedEgo with Gaussian Noise under Community Clustering Scenarios

Global Test Local Test

σ Cora Citeseer Wiki CoraFull FedDBLP Cora Citeseer Wiki CoraFull FedDBLP

0 0.754 0.689 0.813 0.49 0.829 0.724 0.713 0.81 0.512 0.785

0.05 0.747 0.692 0.808 0.488 0.828 0.726 0.714 0.806 0.501 0.782

0.075 0.749 0.692 0.801 0.487 0.829 0.724 0.714 0.799 0.502 0.78

0.15 0.741 0.689 0.799 0.472 0.833 0.716 0.709 0.793 0.486 0.767

0.3 0.744 0.684 0.792 0.466 0.831 0.724 0.708 0.785 0.438 0.76

σ refers to the standard deviation of Gaussian noise.

Fig. 6. F1 score of each client(C1–C5) on CoraFull.

5.10 Improvements for Each Client

To further explore how FedEgo improves the performance of a specific client, we provide the

comparison results of each client in the local and the global test, as shown in Figure 6. The results

indicate that FedEgo enhances the generalization ability and the personalization ability of all

the clients. Compared to FedAvg, FedEgo offers more substantial benefits for clients. Moreover, the

performance of clients in the global test is relatively stable, even though the graph data are severe

non-IID among clients. The stable and significant improvement in performance demonstrates the

effect of FedEgo.

5.11 Effort of Client Participation

In a real scenario, more clients in participation bring more information and data that may have

a potential impact on the statistical heterogeneity. Therefore, we study the influence of client

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

FedEgo: Privacy-preserving Personalized Federated Graph Learning with Ego-graphs 40:21

Table 12. F1 Score Results in the Global Test on Wiki with Different Number of Clients

Number of Clients 5 10 15 20 25 30 35

Local Test 0.9261 0.9256 0.9245 0.9255 0.9254 0.9237 0.9247

Global Test 0.8179 0.8187 0.8175 0.8174 0.8169 0.8158 0.8157

Table 13. Analysis of Adaptive Mixing Coefficient

Global Test Local Test

Methods Cora CoraFull Cora CoraFull

FedEgo w/o PL (Fixed λ = 0) 0.7705 0.6173 0.9345 0.8488

FedEgo (Fixed λ = 0.5) 0.7843 0.6437 0.9585 0.9005

FedEgo-Server (Fixed λ = 1) 0.7921 0.6418 0.9535 0.8985

FedEgo (Adaptive λ) 0.7939 0.6442 0.959 0.9012

participation on FedEgo in this experiment. In particular, we select 5, 10, 15, 20, 30, and 35 clients

to participate in each round on Wiki, and the experimental results are reported in Table 12. The

personalization ability mainly depends on the client’s own dataset and thus slightly drops with

an increase in clients due to the introduced bias. As for generalization ability, the global model

will have capability to collect more graph data to better fit the real dataset and further develop

the generalization ability with more clients participating. This is especially the case when the

number of clients is small. However, with a large number of clients, the benefit of introducing new

clients diminishes, and the training time increases. Redundant clients might not boost the model

performance when the number of clients is sufficient and the data is no longer in short supply.

5.12 Benefit of Adaptive Mixing Coefficient

We further conduct additional experiments on Cora and CoraFull to verify whether FedEgo ben-

efits from the adaptive mixing coefficient λ. We compare adaptive λ with the following methods:

(1) FedEgo w/o PL: As mentioned before, in this method, clients would not perform the mixing

update in the personalization layers. Thus, it can be considered as a variant when λ is fixed to be

0. (2) FedEgo (Fixed λ = 0.5): In this method, we fixed λ to be 0.5 when performing the mixing

update in the personalization layers. (3) FedEgo-Server : In this method, clients entirely replace the

personalization layers with the weight in the server for graph mining. Thus, it can be considered

as a variant when λ is fixed to be 1.

As can be seen from Table 13, adaptive λ improves clients’ performance to some extent. In the

fixed pattern, FedEgo w/o PL has the worst performance without help of the global model. In the

other extreme, FedEgo-Server is inferior to FedEgo with adaptive λ due to the absence of the per-

sonalization. With regard to the compromise strategy, however, the fixed λ = 0.5 may be too small

for some clients with larger EMD but too large for those with smaller EMD, preventing clients

from achieving better performance. By contrast, the adaptive λ allows clients to find their optimal

level of participation in federated learning. With adaptive λ, clients perform better in the local test

and achieve better personalization. Meanwhile, appropriate λ for each client also improves their

F1 score in the global test, which indicates that the mixing coefficient λ in personalization layers

has a significant influence on the generalization ability of the model.

5.13 Visualization

To comprehend how FedEgo improves the performance, we provide the original label distribution

and the model prediction of FedEgo. The distribution of five local biased and the global testing

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

40:22 T. Zhang et al.

Fig. 7. Label distribution of each client (C1–C5) on Wiki.

datasets is shown in Figure 7(a). Despite the fact that the graph data are severely non-IID, FedEgo

enables clients to effectively extract useful information from their biased local datasets and estab-

lish collaboration. As a result, clients are capable of making relatively correct predictions following

the global ground-truth, as shown in Figure 7(b).

6 CONCLUSION

In this article, we study the personalized federated node classification task on graphs and discuss

three main challenges in a realistic setting. The proposed ego-graph-based federated framework

FedEgo makes full use of structural information and tackles non-IID graph data by training a global

model in the server. Moreover, clients adapt the global model to its local dataset by mixing the local

and global weights. Besides, the Mixup technique is also applied for model robustness and privacy

concern. Eventually, FedEgo outperforms baselines significantly with empirical evidence, showing

its ability to address the difficult challenges in federated graph learning. Similar to existing FL

methods, future work needs to address the communication cost for FedEgo, ideally focusing on

efficient compression methods for ego-graphs and model weights.

APPENDICES

A PROOF OF THEOREM 4.1

In this section, we provide the detailed proof of Theorem 4.1.

Proof. Assume a batch of ego-graphs are in a fixed shape with K hop neighbors and nodes in

each layer extends n neighbors. For convenience, we sort the nodes based on its layer to assign

each node a specific position and obtain the position sets Qi in the ith layers, i.e., Q0 = {0}, Q1 =

{1, 2, . . .n}, Q2 = {n + 1,n + 2, . . .n2} and so on. The node in a specific position connects to its

corresponding neighbors in the next layer. For example, the neighbors of node 1 in the second

layer can be represented as {n+1,n+2, . . . 2n}. The position of nodes within the same layer can be

assigned arbitrarily as long as the special connectivity between layers is maintained. Then, the sum

of nodes’ embedding in a specific layer does not change for different alignment when generating

mashed ego-graph. Formally, given a batch of ego-graphs and the mashed ego-graph under an

alignment G, let p (0)
i be the embedding of node i in the mashed ego-graph, we have:∑

i ∈Q j

p (0)
i ≡ Sumj ,∀G, (16)

where Sumj equals the sum of original embedding in the jth layer of the sampled batch ego-graphs.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

FedEgo: Privacy-preserving Personalized Federated Graph Learning with Ego-graphs 40:23

Then, a K layer of GraphSAGE according to Equation (9) can be written into the following

format:

P (K) = AKP (0)W , (17)

where P is the embedding matrix, A denotes the adjacency matrix of the mashed ego-graph, and

W is a reparameterized weight matrix by multiplicationW =W (1)W (2) . . .W (K) . In particular, p (K)
0

denotes the final embedding of the center node.

For convenience, we further expand P (0) and AK as follows:

P (0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P (0)

0
...

P (0)

nK

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (18)

AK =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

AK
0,0 · · · AK

0,nK

...
. . .

...
AK

nK ,0
· · · AK

nK ,nK

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

And thus, according to Equation (17), we have:

P (K) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

AK
0,0 · · · AK

0,nK

...
. . .

...
AK

nK ,0
· · · AK

nK ,nK

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P (0)

0
...

P (0)

nK

⎤⎥⎥⎥⎥⎥⎥⎥⎦
W . (20)

We focus on the center node and compute its final embedding as follows:

P (K)
0 =

[
AK

0,0 · · · AK
0,nK

] ⎡⎢⎢⎢⎢⎢⎢⎢⎣
P (0)

0
...

P (0)

nK

⎤⎥⎥⎥⎥⎥⎥⎥⎦
W . (21)

Due to symmetry of the mashed ego-graph, given a layer j, the weight of the edge between

node 0 and each node i in layer j should be the same in the final adjacency matrix AK . Thus, we

have:

AK
0,i ≡ α j ,∀i ∈ Q j ,∀G, (22)

where α j is a constant that only depends on the K and n.

We continue to combine Equations (16), (21), with (22) to calculate the final embedding of the

center node and complete the proof:

p (K)
0 ≡ ��

K∑
j

α jSumj
��
�W ,∀G . (23)

�

B PROOF OF THEOREM 4.3

In this section, we provide the detailed proof of Theorem 4.3.

Proof. According to the definition of the Φ(T)
i and Φ(T)

д , we further define the model of epoch j

after theT th update as Φ(T)
i, j and Φ(T)

д, j . For simplicity, the update in personalization layers is defined

as the t th step after the T th update. The weight after the update in personalization layers can be

written as:

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

40:24 T. Zhang et al.

⎧⎪⎪⎨⎪⎪⎩
Φ(T)

i,t = λi Φ
(T)
д,t−1 + (1 − λi)Φ(T)

i,t−1

Φ(T)
д,t = Φ(T)

д,t−1.
(24)

And hence, we have the change of weight divergence after single update in personalization

layers:

‖Φ(T)
i,t − Φ(T)

д,t ‖ =‖λi Φ
(T)
д,t−1 + (1 − λi)Φ(T)

i,t−1 − Φ(T)
д,t−1‖

=(1 − λi)‖Φ(T)
д,t−1 − Φ(T)

д,t−1‖.
(25)

Now, take the SGD update of the clients and the server into consideration. Given cross-entropy

loss defined as Equation (2), SGD update in the t − 1-th step performs:

⎧⎪⎪⎨⎪⎪⎩
Φ(T)

i,t−1 = Φ(T)
i,t−2 − η∇Φ�i

(
Φ(T)

i,t−2

)
Φ(T)

д,t−1 = Φ(T)
д,t−2 − η∇Φ�д

(
Φ(T)

д,t−2

)
.

(26)

Therefore, we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ(T)
i,t−1 = Φ(T)

i,t−2 − η
C∑

c=1

Pi (y = c)∇ΦEx |y=c [log fc (x ,Φ(T)
i,t−2)]

Φ(T)
д,t−1 = Φ(T)

д,t−2 − η
C∑

c=1

Pд (y = c)∇ΦEx |y=c [log fc (x ,Φ(T)
д,t−2)].

(27)

We next calculate the weight divergence as follows:

‖Φ(T)
i,t−1 − Φ(T)

д,t−1‖

=

������Φ
(T)
i,t−2 − η

C∑
c=1

Pi (y = c)∇ΦEx |y=c

[
log fc

(
x ,Φ(T)

д,t−2

)]

− Φ(T)
д,t−2 + η

C∑
c=1

Pд (y = c)∇ΦEx |y=c

[
log fc

(
x ,Φ(T)

д,t−2

)] ������
≤ ���Φ(T)

i,t−2 − Φ(T)
д,t−2

���
+ η

�����
C∑

c=1

Pi (y = c)

(
∇wEx |y=c

[
log fc

(
x ,Φ(T)

i,t−2

)]

− ∇wEx |y=c

[
log fc

(
x ,Φ(T)

д,t−2

)])

+ η
C∑

c=1

(
Pi (y = c) − Pд (y = c)

)
∇wEx |y=c

[
log fc

(
x ,Φ(T)

д,t−2

)] �����
≤ ���Φ(T)

i,t−2 − Φ(T)
д,t−2

���
+ η

�����
C∑

c=1

Pi (y = c)

(
∇wEx |y=c

[
log fc

(
x ,Φ(T)

i,t−2

)]

− ∇wEx |y=c

[
log fc

(
x ,Φ(T)

д,t−2

)])�����
+ η

������
C∑

c=1

(
Pi (y = c) − Pд (y = c)

)
∇wEx |y=c

[
log fc

(
x ,Φ(T)

д,t−2

)]������ .

(28)

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

FedEgo: Privacy-preserving Personalized Federated Graph Learning with Ego-graphs 40:25

The last inequality holds due to absolute value inequality.

For simplicity, we denote the gradient of Ex |y=c

[
log fc

(
x ,Φ(T)

i,t−2

)]
of label c as дc , which only

depends on model weight Φ:

дc (Φ) = ∇wEx |y=c
[
log fc (x ,Φ)

]
. (29)

Since дc (Φ) = ∇wEx |y=c log fc (x ,Φ) is Łx |y=c -Lipschitz, we have:���дc (Φ(T)
i) − дc (Φ(T)

д)��� ≤ Lx |y=c
���Φ(T)

i − Φ(T)
д

��� . (30)

Then, we continue to compute the weight divergence based on Equations (29), (30):���Φ(T)
i,t−1 − Φ(T)

д,t−1
���

≤ �1 + η
C∑

c=1

Pi (y = c)Lx |y=c
�
�
���Φ(T)

i,t−2 − Φ(T)
д,t−2

���
+ η

������
C∑

c=1

(
Pi (y = c) − Pд (y = c)

)
дc (Φ(T)

д,t−2)
������

≤ �1 + ηLmax

C∑
c=1

Pi (y = c)��
���Φ(T)

i,t−2 − Φ(T)
д,t−2

���
+ ηдmax (Φ(T)

д,t−2)
C∑

c=1

���Pi (y = c) − Pд (y = c)���
= (1 + ηLmax) ���Φ(T)

i,t−2 − Φ(T)
д,t−2

��� + ηдmax (Φ(T)
д,t−2)

C∑
c=1

���Pi (y = c) − Pд (y = c)��� ,

(31)

where Lmax = maxC
c=1 Lx |y=c and дmax is defined as follows:

дmax

(
Φ(T)

д,t−2

)
=

C
max
c=1

дc

(
Φ(T)

д,t−2

)
=

C
max
c=1

���∇wEx |y=c log fc
(
x ,Φ(T)

д,t−2

)��� . (32)

We further define a = 1+ηLmax and we have the following inequality for t-1 steps SGD update

by induction: ���Φ(T)
i,t−1 − Φ(T)

д,t−1
���

≤a ���Φ(T)
i,t−2 − Φ(T)

д,t−2
��� + ηдmax

(
Φ(T)

д,t−2

) C∑
c=1

���Pi (y = c) − Pд (y = i)���
≤a2 ���Φ(T)

д,t−3 − Φ(T)
i,t−3

���
+ η

C∑
c=1

���Pi (y = c) − Pд (y = i)��� (
дmax

(
Φ(T)

д,t−2

)
+ aдmax

(
Φ(T)

д,t−3

))

≤at−1 ���Φ(T)
i,0 − Φ(T)

д,0
���

+ η
C∑

c=1

���Pi (y = c) − Pд (y = i)��� ��
t−2∑
j=0

ajдmax

(
Φ(T)

д,t−2−j

)��
�=at−1 ���Φ(T−1)

д,t − Φ(T−1)
д,t

���
+ η

C∑
c=1

���Pi (y = c) − Pд (y = i)��� ��
t−2∑
j=0

ajдmax

(
Φ(T)

д,t−2−j

)��
� .

(33)

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

40:26 T. Zhang et al.

Combining Equation (25) with Equation (33), we bound the weight divergence afterT th update

and complete the proof:

���Φ(T)
i,t − Φ(T)

д,t
���

=(1 − λi) ���Φ(T)
д,t−1 − Φ(T)

д,t−1
���

≤(1 − λi)at−1 ���Φ(T−1)
д,t − Φ(T−1)

д,t
���

+ η(1 − λi)
C∑

c=1

���Pi (y = c) − Pд (y = i)��� ��
t−2∑
j=0

ajдmax

(
Φ(T)

д,t−2−j

)��
� .

(34)

�

REFERENCES

[1] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. 2019. Federated learning

with personalization layers. arXiv preprint arXiv:1912.00818 (2019).

[2] Lu Bai and Edwin R. Hancock. 2016. Fast depth-based subgraph kernels for unattributed graphs. Pattern Recog. 50

(2016), 233–245.

[3] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. Fast unfolding of commu-

nities in large networks. J. Stat. Mechan.: Theor. Experim. 2008, 10 (2008), P10008.

[4] Aleksandar Bojchevski and Stephan Günnemann. 2017. Deep Gaussian embedding of graphs: Unsupervised inductive

learning via ranking. arXiv preprint arXiv:1707.03815 (2017).

[5] Chen Cai and Yusu Wang. 2020. A note on over-smoothing for graph neural networks. arXiv preprint arXiv:2006.13318

(2020).

[6] Chuan Chen, Weibo Hu, Ziyue Xu, and Zibin Zheng. 2021. FedGL: Federated graph learning framework with global

self-supervision. arXiv preprint arXiv:2105.03170 (2021).

[7] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. 2018. Federated meta-learning with fast convergence

and efficient communication. arXiv preprint arXiv:1802.07876 (2018).

[8] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. 2021. Exploiting shared representations for

personalized federated learning. arXiv preprint arXiv:2102.07078 (2021).

[9] Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. 2020. Adaptive personalized federated learning.

arXiv preprint arXiv:2003.13461 (2020).

[10] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Conference

on Advances in Neural Information Processing Systems. 1024–1034.

[11] Filip Hanzely and Peter Richtárik. 2020. Federated learning of a mixture of global and local models. arXiv preprint

arXiv:2002.05516 (2020).

[12] Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang He, Liangwei Yang,

Philip S. Yu, Yu Rong, Peilin Zhao, Junzhou Huang, Murali Annavaram, and Salman Avestimehr. 2021. FedGraphNN:

A federated learning system and benchmark for graph neural networks. arXiv preprint arXiv:2104.07145 (2021).

[13] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. 2019. Improving federated learning personalization

via model agnostic meta learning. arXiv preprint arXiv:1909.12488 (2019).

[14] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. 2020. Federated

optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2 (2020), 429–450.

[15] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. 2020. Three approaches for personalization

with applications to federated learning. arXiv preprint arXiv:2002.10619 (2020).

[16] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017. Communication-

efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics. PMLR, 1273–1282.

[17] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2017. Learning differentially private recurrent

language models. arXiv preprint arXiv:1710.06963 (2017).

[18] Péter Mernyei and Cătălina Cangea. 2020. Wiki-CS: A Wikipedia-based benchmark for graph neural networks. arXiv

preprint arXiv:2007.02901 (2020).

[19] Yang Pei, Renxin Mao, Yang Liu, Chaoran Chen, Shifeng Xu, Feng Qiang, and Blue Elephant Tech. 2021. Decentralized

federated graph neural networks. In International Workshop on Federated and Transfer Learning for Data Sparsity and

Confidentiality in Conjunction with IJCAI.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

FedEgo: Privacy-preserving Personalized Federated Graph Learning with Ego-graphs 40:27

[20] Yeqing Qiu, Chenyu Huang, Jianzong Wang, Zhangcheng Huang, and Jing Xiao. 2022. A privacy-preserving subgraph-

level federated graph neural network via differential privacy. In 15th International Conference on Knowledge Science,

Engineering and Management (KSEM’22). Springer, 165–177.

[21] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. 2008. Collective

classification in network data. AI Mag. 29, 3 (2008), 93–93.

[22] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. 2017. Federated multi-task learning. arXiv

preprint arXiv:1705.10467 (2017).

[23] Binghui Wang, Ang Li, Hai Li, and Yiran Chen. 2020. GraphFL: A federated learning framework for semi-supervised

node classification on graphs. arXiv preprint arXiv:2012.04187 (2020).

[24] Zhen Wang, Weirui Kuang, Yuexiang Xie, Liuyi Yao, Yaliang Li, Bolin Ding, and Jingren Zhou. 2022. FederatedScope-

GNN: Towards a unified, comprehensive and efficient package for federated graph learning. In 28th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining. 4110–4120.

[25] Han Xie, Jing Ma, Li Xiong, and Carl Yang. 2021. Federated graph classification over non-IID graphs. Adv. Neural Inf.

Process. Syst. 34 (2021).

[26] Yuhang Yao and Carlee Joe-Wong. 2022. FedGCN: Convergence and communication tradeoffs in federated training of

graph convolutional networks. arXiv preprint arXiv:2201.12433 (2022).

[27] Tehrim Yoon, Sumin Shin, Sung Ju Hwang, and Eunho Yang. 2021. FedMix: Approximation of mixup under mean

augmented federated learning. arXiv preprint arXiv:2107.00233 (2021).

[28] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. 2017. Mixup: Beyond empirical risk mini-

mization. arXiv preprint arXiv:1710.09412 (2017).

[29] Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. 2021. Subgraph federated learning with missing

neighbor generation. Adv. Neural Inf. Process. Syst. 34 (2021).

[30] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. 2018. Federated learning with

non-iid data. arXiv preprint arXiv:1806.00582 (2018).

[31] Qi Zhu, Yidan Xu, Haonan Wang, Chao Zhang, Jiawei Han, and Carl Yang. 2020. Transfer learning of graph neural

networks with ego-graph information maximization. arXiv preprint arXiv:2009.05204 (2020).

Received 8 September 2022; revised 25 June 2023; accepted 30 August 2023

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 40. Publication date: November 2023.

