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ABSTRACT

Multi-view clustering (MVC) aims at exploiting the consistent fea-

tures within different views to divide samples into different clusters.

Existing subspace-based MVC algorithms usually assume linear

subspace structures and two-stage similarity matrix construction

strategies, thereby posing challenges in imprecise low-dimensional

subspace representation and inadequacy of exploring consistency.

This paper presents a novel hierarchical representation for MVC

method via the integration of intra-sample, intra-view, and inter-

view representation learningmodels. In particular, we first adopt the

deep autoencoder to adaptively map the original high-dimensional

data into the latent low-dimensional representation of each sample.

Second, we use the self-expression of the latent representation to

explore the global similarity between samples of each view and

obtain the subspace representation coefficients. Third, we construct

the third-order tensor by arranging multiple subspace representa-

tion matrices and impose the tensor low-rank constraint to suffi-

ciently explore the consistency among views. Being incorporated

into a unified framework, these three models boost each other to

achieve a satisfactory clustering result. Moreover, an alternating

direction method of multipliers algorithm is developed to solve the

challenging optimization problem. Extensive experiments on both

simulated and real-world multi-view datasets show the superiority

of the proposed method over eight state-of-the-art baselines.

CCS CONCEPTS

• Information systems → Clustering; • Computing method-

ologies → Cluster analysis.
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1 INTRODUCTION

With the rapid development of information acquisition technology,

the collected big data often exhibit multi-view characteristics in

terms of different views or sources [6, 15, 32, 39, 46]. For example,

the published news may be reported and described by videos or

texts while a text description can be expressed in Chinese, English,

or other languages. The multi-view data usually admit abundant

potential consistency and complementarity, which can be extracted

by multi-view learning. Among multi-view learning approaches,

multi-view clustering (MVC) methods learn the consensus features

within different views and divide data samples into corresponding

disjoint clusters without ground truth [11, 23, 33, 34, 48].

Generally, the underlying clusters may be masked due to high di-

mension and redundancy of the observed data. To remove irrelevant

or redundant dimension, subspace clustering has received extensive

attention in data mining and machine learning [10, 26, 50, 56]. The

goal of subspace clustering is to find a compact low-dimensional

subspace suitable for each group of data samples and divide them

into multiple clusters. These methods generally obtain clustering

results in three steps. First, the representation coefficients are ob-

tained by solving the optimization problem of different subspace

representations, such as the sparse representation [10] and the low-

rank representation [18, 26]. Then, an affinity matrix is constructed

according to the representation coefficients. Finally, the clustering

results are obtained by using spectral clustering tools [36] on the

affinity matrix. Following this idea, there are a number of subspace

clustering studies, such as [2, 25, 27, 37]. Despite the advent of

these subspace clustering methods on single-view data, they are

not suitable for processing multi-view data. To explore high-order

https://doi.org/10.1145/3511808.3557349
https://doi.org/10.1145/3511808.3557349
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Figure 1: Overview of HRMC. For multi-view data (a), we first use deep autoencoder to explore the latent nonlinear low-

dimensional representation (b) of each sample. Second, based on self-expression, we construct the representation coefficient (e)

of the featurematrix (d) to guarantee the global similar structure between samples in each view. Third, we fuse representations

of all views as a third-order tensor (f) and introduce the tensor low-rank constraint on the rotated tensor (g) to capture high-

order correlation amongmultiple views. Fourth, the representation (f) and the affinitymatrix (h) are simultaneously optimized

to strengthen each other. Finally, we obtain clustering results (i) after applying spectral clustering on the affinity matrix.

correlations among multiple views, many tensor-based multi-view

subspace clustering methods were proposed. For instance, Xie et
al. [42] used the tensor nuclear norm based on the tensor-singular

value decomposition, and Gao et al. [12] further used the weighted

tensor nuclear norm for multi-view clustering. Differently, Chen et
al. [3] performed multi-view clustering on the latent embedding

space instead of the original feature space. Moreover, Xiao et al.
[40] used the prior knowledge and the tensor low-rank constraint

to learn the self-representation tensor.

Although the aforementioned methods achieve competitive per-

formance, they still have the following limitations. (1) They as-

sume that the multi-view data admit the linear subspace struc-

ture though the subspace structure is usually nonlinear and even

complex—this may lead to the failure of finding the compact latent

low-dimensional subspace. (2) They usually separately construct

two key components in MVC: the affinity matrix and the low-rank

representation tensor, but the close dependence between them is ig-

nored, thereby resulting in the inadequacy of exploring consistency.

To address these two limitations, some studies such as [5, 47, 54]

employed the kernel-based mapping function to explore the nonlin-

ear subspace structure while other studies like [4, 5, 40] proposed

to jointly optimize the representation tensor and the affinity ma-

trix. However, the kernel selection is a difficult task and unsuitable

kernel functions may lead to the unsatisfactory clustering perfor-

mance [16, 29]. Moreover, all these methods cannot fully extract

the hierarchical and nonlinear structure in multi-view data since

they are restricted to shallow architectures.

Recently, owing to the powerful ability of deep learning, deep

multi-view clustering methods have been proposed to learn the

hierarchical structure embedded in multi-view data [13, 17, 19, 24,

41, 55]. Taking the advantage of deep representation, Wang et al.
[38] proposed a deep model, which integrates autoencoders and

canonical correlation analysis (CCA) to capture the structure infor-

mation. However, CCA is only suitable for handling the two-view

case and is incapable of handling more views though the number

of views in real datasets is often more than two [28]. Moreover,

Zhao et al. [52] used deep matrix factorization to learn the consen-

sus latent representation for MVC. Zhang et al. [49] proposed a

deep clustering method using mixture of autoencoders. Du et al.
[9] adopted multiple aotoencoders to learn the nonlinear structure

of each view and explored the consistency between any two views

together. Although these methods perform well for capturing the

unique information within each view, they cannot fully explore the

consistent and complementary information across different views.

In this work, we present a Hierarchical Representation-based

Multi-view Clustering (HRMC). In particular, the proposed HRMC

framework consists of intra-sample adaptive latent representation

learning, intra-view global similarity structure learning, and inter-

view structure-preserved consistency learning, as shown in Fig. 1.

HRMC is briefly described as follows:

(1) At the intra-sample adaptive latent representation learn-

ing, we adopt deep autoencoders to adaptively map the original

high-dimensional data into the latent low-dimensional representa-

tion. This manner not only captures the nonlinear structure within

each sample but also preserves the local details of original data as

many as possible.

(2) At the intra-view global similarity structure learning, in-

spired by the self-expression subspace clustering, we use the self-

expression strategy to learn the representation coefficient of the

latent low-dimensional representation, thereby exploring global

correlations among samples within each view.

(3) At the inter-view structure-preserved consistency learn-

ing, we apply the tensor nuclear norm constraint on the third-order

tensor constructed by all representation coefficients to learn the
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unified similarity matrix. Constructing a third-order tensor can pre-

serve the overall structure of representation coefficients—thereby

better exploring consistency information among multiple views.

The proposed hierarchical representation learning not only ex-

plores the view-specific local and global structures but also fully

captures the high-order correlations and consistency among multi-

ple views. The main contributions of this paper are listed as follows:

• We propose a hierarchical representation learning-based method

to obtain the consistency information among different views, thereby

simultaneously exploring the complex nonlinear structure hidden

in each sample, the global correlation of the latent representations

in each view, and the high-order correlation within all representa-

tion coefficients, to cluster multi-view data (Sec. 3).

•We integrate these three representation learning models into a

unified framework. Therefore, the latent embedding representa-

tions, self-expression coefficients, and the uniform similarity matrix

are jointly optimized to yield a satisfactory clustering result.

• An efficient algorithm is developed to solve the proposed opti-

mization problem by the alternating direction method of multipliers

(Sec. 4). Extensive experiments on both simulated and real-world

datasets show the effectiveness and superiority of the proposed

method (Sec. 5). The ablation experiments also verify the benefits of

three hierarchical representations to the proposed method (Sec. 6).

2 NOTATIONS AND PRELIMINARIES

2.1 Notations

We use the calligraphy letterZ, the upper case letter Z , the bold
lower case letter z, the lower case letter z to respectively denote the
tensor, the matrix, the vector, and the scalar. The (i, j)-th element of

Z ∈ Rn1×n2
and (i, j,k)-th element ofZ ∈ Rn1×n2×n3

are denoted

by Zi, j and Zi, j,k , respectively. For a third-order tensor Z, we

use Z(i, :, :), Z(:, j, :), and Z(:, :,k) (or Z(k )
) to denote the i-th

horizontal, j-th lateral, and k-th frontal slices, respectively. The

infinity norm of Z is ∥Z∥∞ = maxi, j,k |Zi, j,k |. The Frobenius

norms of Z andZ are denoted by ∥Z ∥F =
√∑

i, j Z
2

i, j and ∥Z∥F =√∑
i, j,k Z

2

i, j,k , respectively.

2.2 Preliminaries

ForZ ∈ Rn1×n2×n3
, we denote the discrete Fourier transform (DFT)

of Z along the third dimension by
¯Z, i.e.,

¯Z = fft(Z, [], 3), and

we can obtainZ by inverse DFT, i.e.,Z = ifft( ¯Z, [], 3). The block

diagonal matrix ofZ is

bdiag(Z) =

©­­­­­«
Z(1)

Z(2)

. . .

Z(n3)

ª®®®®®¬
. (1)

The block-circulant matrix of Z has the following form:

bcirc(Z) =

©­­­­­«
Z(1) Z(n3) · · · Z(2)

Z(2) Z(1) · · · Z(3)

...
...

. . .
...

Z(n3) Z(n3−1) · · · Z(1)

ª®®®®®¬
. (2)

In addition, the unfold and fold operators ofZ are defined as

unfold(Z) =
(
Z(1)

;Z(2)
; . . . ;Z(n3)

)
, fold(unfold(Z)) = Z. (3)

To better understand the definition of tensor nuclear norm used

in our work, we first give some related definitions.

Definition 1. (Tensor-tensor product) The tensor-tensor prod-
uct of A ∈ Rn1×n2×n3 and B ∈ Rn2×l×n3 is

C = A ∗ B = fold(bcirc(A) × unfold(B)),

where C ∈ Rn1×l×n3 and × denotes the matrix product.

Definition 2. (Transpose tensor) For a tensorZ ∈ Rn1×n2×n3 ,
the transpose tensorZ⊤ ∈ Rn2×n1×n3 can be obtained by firstly trans-
posing each of frontal slices and then reversing the order of transposed
frontal slices 2 through n3.

Definition 3. (Identity tensor) For the identity tensor I ∈

Rn1×n1×n3 , whose the first frontal slice is an n1 × n1 identity matrix
and whose other frontal slices are all zeros.

Definition 4. (Orthogonal tensor) A tensorZ is orthogonal
if it satisfiesZ⊤ ∗ Z = Z ∗Z⊤ = I.

Definition 5. (Tensor SingularValueDecomposition (TSVD))
LetZ ∈ Rn1×n2×n3 , thenZ has TSVD as

Z = U ∗ S ∗ V⊤, (4)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal tensors,
and S ∈ Rn1×n2×n3 is a diagonal tensor.

Definition 6. (Tensor Nuclear Norm (TNN)) Given a third-
order tensorZ ∈ Rn1×n2×n3 , TNN is defined as

∥Z∥∗ =

n3∑
k=1

∥ ¯Z(k )∥∗, (5)

where ∥ ¯Z(k )∥∗ is the nuclear norm of ¯Z(k ).

3 THE PROPOSED MODEL

This section details the proposed model. We first introduce some

symbols. Given a multi-view dataset X̃ = {X (v) ∈ Rd
(v )×N }Vv=1

,

where X (v)
denotes the feature matrix of the v-th view, d(v) de-

notes the dimension of the v-th feature space, N is the number of

samples, and V is the total number of views. We then elaborate

on three hierarchical representation learning models: adaptive la-

tent representation learning (Sec. 3.1), global similarity structure

learning (Sec. 3.2), and structure-preserved consistency learning

(Sec. 3.3).

3.1 Intra-sample Adaptive Latent

Representation Learning

The practical multi-view data usually admits high dimension and

complex linear or nonlinear structure information. Therefore, one

effective way is to find a mapping that transforms the input data to

a low-dimensional latent representation, which maintains the local

information of the input data.

We adaptively generate the low-dimensional latent representa-

tion in the framework of deep autoencoder [31, 45], to capture the
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complex structure information of each sample. The deep autoen-

coder contains two components: i) an encoder that maps the input

data to low-dimensional feature space and ii) a decoder that maps

the low-dimensional representation to the reconstruction space.

Both the encoder and the decoder are composed of multiple linear

and nonlinear functions. Let h
(v)
n,0 = x

(v)
n ∈ Rd

(v )

be the n-th input

data of the v-th view. Then, the output of l-th layer is denoted by

h
(v)
n,l = f (W(l )h

(v)
n,l−1

+ b(l )) ∈ R
d(l ) , (6)

where f is the nonlinear activation function,W(l ), b(l ), and d(l )
denote the weight matrix, the bias vector of the encoder, and the

number of neurons of the l-th layer, respectively. Moreover, for the

input data of thev-th viewX (v) = {x
(v)
1
,x

(v)
2
, . . . ,x

(v)
N } ∈ Rd

(v )×N
,

the corresponding reconstructions are

X̂ (v) = {h
(v)
1,L ,h

(v)
2,L , . . . ,h

(v)
N ,L}.

Then the problem is to minimize the data reconstruction loss

min

W(l ),b(l )

V∑
v=1

{
1

2

∥X (v) − X̂ (v)∥2

F +
1

2

L∑
l=1

(∥W(l )∥
2

F + ∥b(l )∥
2

2
)}. (7)

The first term is to minimize the reconstruction error between data

points of each view. The second regularization term is to avoid over-

fitting. Though (7), we can explore the complex nonlinear structure

of input data and get the low-dimensional latent representation by

H
(v)
L/2
= {h

(v)
1,L/2
,h

(v)
2,L/2
, . . . ,h

(v)
N ,L/2

}, (8)

which can maintain the local detail information of each view.

3.2 Intra-view Global Similarity Structure

Learning

The low-rank representation method can seek the similarity be-

tween samples by the self-expression learning. In fact, the latent

representation H
(v)
L/2

is a compact representation of input samples.

Thus, H
(v)
L/2

has the same clustering structure as input samples and

also can explore the correlation between samples. Therefore, we

construct the similarity matrix of each view on the low-dimensional

latent representation. Moreover, we introduce the low-rank con-

straint as the structure prior to reflect the global similarity of samples

in each view. The problem (7) is reformulated as

min

W(l ),b(l )

V∑
v=1

{
1

2

∥X (v) − X̂ (v)∥2

F +
1

2

L∑
l=1

(∥W(l )∥
2

F + ∥b(l )∥
2

2
)

+
λ1

2

∥H
(v)
L/2

− H
(v)
L/2

C
(v)
L/2

∥2

F +
λ3

2

rank(C
(v)
L/2

)}, (9)

where λ1 and λ3 are two positive tradeoff parameters and C
(v)
L/2

is

the representation coefficient matrix. Here, ∥H
(v)
L/2

− H
(v)
L/2

C
(v)
L/2

∥2

F

together with the low-rank term rank(C
(v)
L/2

) preserve the global

structure of each view.

Since the autoencoder consists of multi-layer nonlinear models,

model (9) can explore the local nonlinear correlation between the

input X (v)
and the latent representation H

(v)
L/2

. Therefore, a com-

pact low-dimensional subspace representation of each view can be

learned by the local and global similar structures of each view.

3.3 Inter-view Structure-Preserved Consistency

Learning

By imposing the self-expression learning on the latent representa-

tion of each view, we get the corresponding representation matrix

that expresses the global similarity between samples of each view.

The samples from different views (i.e., the dataset X (v)
) yield dif-

ferent representation matrices (i.e., C
(v)
L/2

). To cluster multi-view

data, we need to explore the consistency among views, i.e., the

correlation of different representation matrices.

Stacking the representation coefficients of all views into a third-

order tensor, we explore the high-order correlation of views to

obtain the consistency information among multiple views. Thus,

we apply TNN on the stacked tensor

min

C,S
∥C∥∗ +

V∑
v=1

{
λ2

2

∥C
(v)
L/2

− S ∥2

F }

s.t. C = Φ(C
(1)

L/2
,C

(2)

L/2
, . . . ,C

(v)
L/2

),

(10)

whereΦ denotes the operator that stacks each representationmatrix

as the lateral slice of a third-order tensor, ∥C∥∗ is TNN (see Def. 6)

to characterize the high-order correlation of views, S is a unified

affinity matrix learned form each matrix C
(v)
L/2

, and λ2 is a tradeoff

parameter. By (10), we can simultaneously preserve the structure

of each coefficient matrix C
(v)
L/2

and the consistency information

among views.

3.4 Proposed Model

We integrate the above-mentioned hierarchical representation learn-

ing models into a unified framework and construct the following

optimization problem

min

C,S,W(l ),b(l )

V∑
v=1

{
1

2

∥X (v) − X̂ (v)∥2

F +
λ1

2

∥H
(v)
L/2

− H
(v)
L/2

C
(v)
L/2

∥2

F

+
1

2

L∑
l=1

(∥W(l )∥
2

F + ∥b(l )∥
2

2
) +

λ2

2

∥C
(v)
L/2

− S ∥2

F } +
λ3

2

∥C∥∗

s.t. C = Φ(C
(1)

L/2
,C

(2)

L/2
, . . . ,C

(v)
L/2

). (11)

By optimizing (11), we can obtain the affinity matrix, and then apply

the spectral clustering tool [36] to get the multi-view clustering

result. The advantages of our model are

• The proposed model can explore the complex nonlinear structure

of each sample and consider both local and global structure priors

for view-specific information, as well as the high-order correlation

and consistency among all views.

• The learned low-dimensional latent subspace representation, the

self-expression matrix, and the affinity matrix can boost each other

in an interplay manner to get a satisfactory clustering performance.

•The proposed framework is flexible. The deep autoencodermodule

can be flexibly replaced by other deep neural network frameworks.

Moreover, the high-order correlation of tensor can be characterized

by other tensor low-rank constraints.

Next, we prove that the minimizer C has the tensor block diago-

nal structure, which implies a clear clustering structure.
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Theorem 1. (TensorBlock-diagonal Property). Assume that
tensor subspaces {K1, . . . ,Kk } are independent, then the minimizer
C of problem (11) is block-diagonal.

Proof. Let C be the optimal solution of problem (11). We decom-

pose C = Φ(C
(1)

L/2
,C

(2)

L/2
, . . . ,C

(V )

L/2
) into two parts, i.e., C = B + Q,

where B is a block diagonal tensor defined as

B(i, j, :) =


C(i, j, :) if the i-th and j-th samples are

drawn from the same subspace;
0 otherwise.

Assume that x
(v)
i belongs to thek-th tensor subspaceKk , i.e., x

(v)
i ∈

Kk and h
(v)
i ∈ Kk . According to the definitions of B and Q, we

have H (v)
b
(v)
i ∈ Kk , and H (v)

q
(v)
i ∈

⊕
i,k Ki , where b

(v)
i and

q
(v)
i are the i-th columns of B(v) and Q(v)

, respectively. On the

other hand, we have H (v)
q
(v)
i = H (v)

c
(v)
i − H (v)

b
(v)
i = h

(v)
i −

H (v)
b
(v)
i ∈ Kk . Since subspacesKi , i = 1, 2, . . . ,K are independent,

Kk
⋂⊕

k,i Ki = 0. Thus,H (v)
q
(v)
i = 0. We then haveH (v)

b
(v)
i =

h
(v)
i −H (v)

q
(v)
i = h

(v)
i and H (v)B(v) = H (v)

. Hence, B is also the

solution to (11).

In addition, since C = B +Q, ∥C∥∗ = ∥B +Q∥∗ ≥ ∥B∥∗ + ∥Q∥∗,

we obtain ∥C∥∗ ≥ ∥B∥∗. Since C is the optimal solution of problem

(11), then ∥C∥∗ ≤ ∥B∥∗. Thus, we have ∥C∥∗ = ∥B∥∗ and the

unique optimal solution C = B has the block-diagonal property.

The proof is completed. □

Theorem 1 demonstrates the block-diagonal structure ofC, which

implies the underlying clustering structure, and the number of

blocks is the number of clusters.

4 THE OPTIMIZATION ALGORITHM

We present an efficient alternative minimization algorithm based on

the alternating direction method of multipliers framework (ADMM)

[1, 44, 53] to solve problem (11).

By introducing the auxiliary variable W = C, problem (11) can

be reformulated as

min

C,W,S,W(l ),b(l )

V∑
v=1

{
1

2

∥X (v) − X̂ (v)∥2

F +
λ1

2

∥H
(v)
L/2

− H
(v)
L/2

C
(v)
L/2

∥2

F

+
1

2

L∑
l=1

(∥W(l )∥
2

F + ∥b(l )∥
2

2
) +

λ2

2

∥C
(v)
L/2

− S ∥2

F } +
λ3

2

∥W∥∗

s.t. C = Φ(C
(1)

L/2
,C

(2)

L/2
, . . . ,C

(v)
L/2

), W = C. (12)

Then, the augmented Lagrangian function of (12) is

L(C,W, S,W(l ), b(l ),P)

=

V∑
v=1

{
1

2

∥X (v) − X̂ (v)∥2

F +
λ1

2

∥H
(v)
L/2

− H
(v)
L/2

C(v)∥2

F

+
1

2

L∑
l=1

(∥W(l )∥
2

F + ∥b(l )∥
2

2
) +

λ2

2

∥C
(v)
L/2

− S ∥2

F } (13)

+
λ3

2

∥W∥∗ +
β

2

∥W − C +
P

β
∥2

F ,

where P is the Lagrangian variable and β is a penalty parameter. By

ADMM algorithm, the original intractable optimization problem is

transformed into several subproblems that are easy to solve. Next,

we solve each of the following subproblems separately.

1. (W(l ), b(l ))-subproblem.We use stochastic gradient descent

algorithm (SGD) [7, 35] to optimize the parameters involved in the

deep autoencoder

arg min

(W(l ),b(l ))

1

2

∥X (v) − X̂ (v)∥2

F +
λ1

2

∥H
(v)
L/2

− H
(v)
L/2

C
(v)
L/2

∥2

F

+
1

2

L∑
l=1

(∥W(l )∥
2

F + ∥b(l )∥
2

2
). (14)

The problem can be rewritten as the sample-wise form

arg min

(W(l ),b(l ))

1

2

N∑
n=1

∥x
(v)
n − x̂

(v)
n ∥2

2
+
λ1

2

∥h
(v)
n,L/2

− H
(v)
L/2

c
(v)
n,L/2

∥2

2

+
1

2

L∑
l=1

(∥W(l )∥
2

F + ∥b(l )∥
2

2
), (15)

where x
(v)
n , h

(v)
n,L/2

, and c
(v)
n,L/2

denote the n-th column vectors of

X (v)
, H

(v)
L/2

, and C
(v)
L/2

, respectively.

By computing the sub-gradients ofW(l ) and b(l ), {W(l ), b(l )}
L
l=1

can be updated by

W(l ) =W(l ) − µ
∂ f

∂W(l )
and b(l ) = b(l ) − µ

∂ f

∂b(l )
, (16)

where f is the objective function (15),
∂f

∂W(l )
and

∂f
∂b(l )

are the sub-

gradients ofW(l ) and b(l ), respectively, and µ is the learning rate.

2. C
(v)
L/2

-subproblem. Optimizing C
(v)
L/2

is a quadratic problem

C
(v)
L/2
= arg min

C (v )

L/2

λ1

2

∥H
(v)
L/2

− H
(v)
L/2

C
(v)
L/2

∥2

F +
λ2

2

∥C
(v)
L/2

− S ∥2

F

+
β

2

∥W (v) −C
(v)
L/2
+
P (v)

β
∥2

F , (17)

whereW (v) =W(:,v, :), and P (v) = P(:,v, :). The optimal solution

satisfies the following equation

(λ1A
(v) + (λ2 + β)I )C

(v)
L/2
= λ2S + λ1A

(v) + βW (v) + P (v), (18)

where A(v) = (H (v))⊤H (v)
.

3. S-subproblem. Fixed other variables, the S-subproblem is

S = arg min

S

V∑
v=1

λ2

2

∥C
(v)
L/2

− S ∥2

F , (19)

where S can be obtained by

S =
V∑
v=1

C
(v)
L/2

/V . (20)

4.W-subproblem. Fixed other variables, theW-subproblem

can be formulated as

W = arg min

W

λ3

2

∥W∥∗ +
β

2

∥W − C +
P

β
∥2

F . (21)
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Algorithm 1 The optimization algorithm for solving (11).

Input: The input multi-view data {X (v)}Vv=1
, cluster number c ,

the embedding dimension d of the latent representation, and

parameters λ1, λ2, λ3, β = 10
−4
, and βmax = 10

10
.

Initialization: C,W, P, S and neural network {W (l ), b(l )}Ll=1
.

1: while not converged and t ≤ 100 do

2: UpdateW (l )
and b

(l )
via (16);

3: Update C(v)
via (18);

4: Update S via (20);

5: Update W by (22);

6: Update P by (23);

7: Update penalty parameter β by β = min(1.1 × β, βmax);

8: Check the convergence condition:

∥W − C∥∞ ≤ 10
−7

9: end while

10: Performing the spectral clustering tool on the unified affinity

matrix S .
Output: The clustering results.

It can be solve by tensor singular value thresholding operator [51]

W = UΓλ
3

β
(S)VT , (22)

where (U,S,V) comes from the TSVD of (C − P
β ) and Γλ

3

β
(S) =

diag(max{S −
λ3

β , 0}).

5. P-subproblem The variable P can be updated by

P = P + β(W − C). (23)

Finally, we summarize the proposed algorithm in Algorithm 1.

Complexity Analysis. The main computational cost depends

on the training cost of the neural network and the computational

cost of C and W-subproblems. For the parametric network, the

computational complexity is O(aN 3), where a denotes the number

of training epochs. Since the C-subproblem involves the inverse

operation of a matrix (N × N ), the computational complexity is

O(N 3). The W-subproblem contains the TSVD of a tensor with

size N ×V × N , where both the complexities of FFT and inverse

FFT are O(2NVN logN ), and the SVD computation of a matrix

(N × V ) costs O(NV 2). Thus, the complexity of W-subproblem

is O(2N 2V logN + N 2V 2). Let t denote the number of iterations.

Thus, the total computational complexity of Algorithm 1 is

O(t(aN 3 + 2N 2V logN + N 2V 2)).

Convergence Analysis. The general ADMM algorithm solves

the optimal problem with two block variables [1, 8]. Since the

proposed model contains multiple block variables, it is nontrivial

to prove its theoretical convergence. Fortunately, without loss of

generality, the calculation ofW (l )
and b

(l )
in Algorithm 1 is conver-

gent. Moreover, other variables in Algorithm 1 have closed-form

solutions. Therefore, the proposed algorithm is empirically conver-

gent according to the analysis in previous studies [42, 43]. We also

demonstrate the numerical convergence of the proposed algorithm

in Section 6.

5 NUMERICAL EXPERIMENTS

In this section, we evaluate the proposed HRMC by extensive ex-

periments on both simulated and real-world multi-view datasets.

5.1 Experiment Settings

5.1.1 Baselines. We compare the proposedmethodwith eight state-

of-the-art baselines: TSVD based Multi-view Subspace Clustering

(tSVD-MSC) [42] enforces the low-rank tensor constraint on the

rotated tensor to obtain the consensus among multi-view data; Re-

ciprocal Multi-layer Subspace Learning (RMSL) [22] reduces the

dimension of original data by hierarchical self-representative layers

and uses the backward encoding network to enforce the consensus

among data samples; Weighted Tensor-Nuclear Norm Minimiza-

tion (WTNNM) [12] introduces the weighted TNN to explore the

high-order correlation between views; Multi-view Clustering in

Latent Embedding Space (MCLES) [3] learns the global consistency

structure on the latent embedding representation; Multi-view Di-

mensionality co-Reduction (MDcR) [47] uses the kernel function

to obtain the low-dimensional feature of each view and employees

the Hilbert-Schmidt independence criterion to capture the corre-

lation between views; Projective Low-Rank Subspace Clustering

(PLrSC) [21] learns the low-rank representation of all data by a

deep encoder, which is trained on a small part of the large original

dataset; DeepMatrix Factorization forMVC (DMF-MVC) [52] intro-

duces the deep semi-nonnegative matrix factorization to learn the

hidden feature and uses the graph regularizer to learn the share rep-

resentation; Learnable Subspace Clustering (LeaSC) [20] achieves

the low-dimensional representation of data according to a trained

parametric function, where the function is established by a robust

predictive coding machine.

5.1.2 Evaluation Measures. To evaluate the proposed method, we

use six metrics to measure the clustering performance, including ac-

curacy (ACC), normalized mutual information (NMI), adjusted rand

index (AR), F-score, Precision, and Recall [30]. The higher values of

them indicate the better clustering performance. For avoiding the

randomness, we run 10 independent trials on datasets to obtain the

final clustering results in terms of means and variances. We test

all algorithms on the platform with an Intel(R) Core(TM) i7-8700M

CPU with 3.70 GHz and 32 GB of RAM.

5.1.3 Parameter Setting. There are three regularization parameters

in our model, i.e., λ1, λ2, and λ3. The values of λ1 and λ3 are selected

from {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}, and λ2 = 1. In addition,

we fix the learning rate µ = 2 × 10
−10

. For baselines, we carefully

adjust parameters to obtain the excellent clustering performance

according to the suggestions of relevant articles.

5.1.4 ImplementationDetails. In the proposed algorithm,we choose

tanh as the nonlinear activation function of deep autoencoder. For

real-world dataset, we construct a five-layer neural network that

consists of d(v) − 200 − 100 − 200 − d(v) neurons, where d(v) is the
feature dimension of the input data. Since the deep autoencoder

involves multiple nonlinear hidden layers, it is difficult to optimize

its weights. According to [14], for the initialization of the network,

we adopt two steps of pre-training and fine-tuning. Using a layer-

by-layer learning strategy, only one layer of features is pre-trained

at a time, and then the deep network is initialized with pre-trained
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Table 1: Clustering performance on simulated dataset. The

best and second best values are in bold and underlined, re-

spectively.

Method ACC NMI AR F-score Precision Recall

tSVD-MSC 0.9150±0.0000 0.8515±0.0000 0.8121±0.0000 0.8599±0.0000 0.8427±0.0000 0.8778 ±0.0000

RMSL 0.4050±0.0028 0.1530±0.0036 0.0804±0.0025 0.3518±0.0011 0.3002±0.0012 0.4497±0.0189

WTNNM 0.9963±0.0000 0.9842±0.0000 0.9900±0.0000 0.9925±0.0000 0.9925±0.0000 0.9926±0.0000

MCLES 0.7080±0.0000 0.6305±0.0000 0.5495±0.0000 0.6685±0.0000 0.6306± 0.0000 0.7112±0.0000

MDcR 0.9200±0.0000 0.7988±0.0000 0.8085±0.0000 0.8568±0.0000 0.8471±0.0000 0.8667±0.0000

PLrSC 0.7851±0.0086 0.6803±0.0072 0.6177±0.0146 0.7188±0.0075 0.6855±0.0109 0.7578±0.0048

DMF-MVC 0.8925±0.0000 0.7662±0.0000 0.7483±0.0000 0.8122±0.0000 0.7972±0.0000 0.8276±0.0000

LeaSC 0.9504±0.0001 0.8546±0.0004 0.8754±0.0005 0.9064±0.0003 0.9060± 0.0003 0.9069±0.0003

HRMC 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000

weights. For the initialization of the structure priorC(v)
, the sparse

subspace clustering method [10] is adopted in our algorithm.

5.2 Simulated Data Experiments

We first conduct experiments on simulated datasets to evaluate the

effectiveness of the proposed method.

5.2.1 Simulated Data Generation. The details of generating simu-

lated data are as follows: 1) we generate four types of datasets, each

containing 200 samples in 2D space, as the low-dimensional latent

representations; 2) we use different nonlinear activation functions

on four datasets to generate the original multi-view dataset. The

mathematical form is

x
(v)
n = (tanh(ϕ(v)(Ahn )))

2,

where hn ∈ R2
is the low-dimensional data, A ∈ R100×2

is a ran-

dom matrix obeying the Gaussian distribution, and x
(v)
n ∈ R100

is

the high-dimensional data with complex structure. Set {ϕ(v)}Vv=1

denotes different nonlinear functions for different views. In the

following, we let ϕ(1) = sigmoid, ϕ(2) = tanh, and ϕ(3) = ReLU and

generate the simulated multi-view data with three views.

5.2.2 Results. Table 1 presents the clustering performance of dif-

ferent methods on the simulated multi-view data. We observe that

the proposed HRMC achieves the best clustering result compared

with other baselines. By considering the weights of singular values

on the original feature space, WTNNM obtained the second best

clustering result. LeaSC also achieved the third best performance

due to the trained parametric function. The performance of t-SVD-

MSC, RMSL, and MCLES is unsatisfactory. One possible reason

is that they only consider the consensus information of different

views while ignoring the view-specific local nonlinear structure.

Moreover, the performance of MDcR is suboptimal due to ignorance

of the high-order correlations between views.

Fig. 2 shows the visualizations of different methods. We find that

the proposed HRMC obtains very close samples of the same class

and far-apart samples of different classes. Moreover, Fig. 3 illus-

trates the block diagonal structures of unified similarity matrices

by different methods. Compared with other baselines, our HRMC

obtains the clearer block diagonal structure, which is consistent

with the above results and also confirms Theorem 1.

5.3 Real-world Data Experiments

We then evaluate the effectiveness of the proposed HRMC on four

common multi-view datasets described by multiple features.
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Figure 2: Visualizations of different clustering methods on

simulated dataset.

tSVD-MSC RMSL WTNNM MDcR

PLrSC DMF-MVC LeaSC HRMC

Figure 3: Block diagonal structures of the similarity matri-

ces of different clustering methods on simulated dataset.

5.3.1 Datasets. 100Leaves1 contains 1, 600 images of 100 classes.

Three features are extracted, including shape descriptor, fine-scale

margin, and texture histogram.

MSRC
2
has 210 objects with seven classes, including cars, trees,

airplanes, buildings, bicycles, cows, and human faces. Each of them

is described by three views.

BBCnews
2
is composed of 685 reports, containing business, poli-

tics, sports, technology, and entertainment. Each of them has four

views.

Webkb
2
consists of 203 web-pages of four classes. Each web-page

is described by the content of the page, the anchor text of the

hyper-link, and the text of the title.

5.3.2 Results. Table 2 lists the clustering performance by all al-

gorithms. We observe that the proposed HRMC achieves the best

performance among all the methods in terms of ACC, NMI, AR,

F-score, Precision, and Recall on all the cases. The detailed analysis

is given as follows:

(1) Methods tSVD-MSC, MCLES, and WTNNM only consider

the consistency between views and the global structure of each

view while ignoring the local nonlinear structure of each sample.

Although DMF-MVC and LeaSC can learn rich hierarchical informa-

tion, they overemphasize the local information and reconstruction

information of the input data, thereby ignoring the global structure

of each view and high-order correlation of multi-view data. By con-

trast, the proposed HRMC fully explores the consistency between

1
https://cs.nyu.edu/roweis/data.html

2
https://github.com/wangsiwei2010/awesome-multi-view-clustering

https://cs.nyu.edu/roweis/data.html
https://github.com/wangsiwei2010/awesome-multi-view-clustering
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Figure 4: Visualizations of different clustering methods on MSRC dataset.

Table 2: The clustering performance by all algorithms on the

100Leaves, BBCnews, MSRC, and Wekbk dataset.

Datasets Method ACC NMI AR F-score purity recall

100Leaves

tSVD-MSC 0.8991 ±0.0001 0.9648±0.0000 0.8908±0.0001 0.8916±0.0001 0.8490±0.0002 0.9385±0.0000

RMSL 0.6287±0.0003 0.7835±0.0001 0.4695±0.0005 0.4749±0.0004 0.4384±0.0005 0.5182±0.0004

WTNNM 0.9078±0.0001 0.9638±0.0000 0.8939±0.0001 0.8947±0.0001 0.8584±0.0002 0.9341±0.0000

MCLES 0.7819±0.0023 0.7622±0.0004 0.7402±0.0018 0.7098±0.0003 0.7071±0.0014 0.6798±0.0032

MDcR 0.7244±0.0002 0.8705±0.0001 0.6323±0.0004 0.6359±0.0003 0.6042±0.0003 0.6712±0.0004

PLrSC 0.7511±0.0007 0.8884±0.0001 0.6761±0.0009 0.6793±0.0008 0.6454±0.0012 0.7173±0.0005

DMF-MVC 0.2546±0.0000 0.5606±0.0000 0.1065±0.0000 0.1156±0.0000 0.1069±0.0000 0.1258±0.0000

LeaSC 0.7262±0.0003 0.8675±0.0001 0.6318±0.0004 0.6354±0.0004 0.6047± 0.0004 0.6695±0.0004

HRMC 0.9144±0.0000 0.9783±0.0000 0.9046±0.0000 0.9055±0.0000 0.8680±0.0000 0.9465±0.0000

BBCnews

tSVD-MSC 0.7169±0.0000 0.8709±0.0000 0.7423±0.0000 0.7986±0.0000 0.8727±0.0000 0.7360±0.0000

RMSL 0.3322±0.0006 0.0318±0.0000 0.0056±0.0000 0.3410±0.0007 0.2410±0.0000 0.6074±0.0283

WTNNM 0.7188±0.0000 0.8709±0.0000 0.7425±0.0000 0.7987±0.0000 0.8727±0.0000 0.7363±0.0000

MCLES 0.7191±0.0171 0.6562±0.0177 0.5569±0.0458 0.6901±0.0185 0.5889±0.0283 0.8654±0.0029

McDR 0.9007±0.0000 0.8351±0.0000 0.8595±0.0000 0.8934±0.0000 0.8832±0.0000 0.9039±0.0000

PLrSC 0.3360±0.0024 0.0837±0.0017 0.0472±0.0007 0.2576±0.0004 0.2782±0.0004 0.2399±0.0005

DMF-MVC 0.3220±0.0000 0.0573±0.0000 0.0317±0.0000 0.2690±0.0000 0.2618±0.0000 0.2766±0.0000

LeaSC 0.3757±0.0000 0.0592±0.0000 0.0112±0.0000 0.3861±0.0000 0.2429±0.0000 0.9409±0.0000
HRMC 0.9688±0.0000 0.9064±0.0000 0.9231±0.0000 0.9412±0.0000 0.9505±0.0000 0.9322±0.0000

MSRC

tSVD-MSC 0.9619±0.0000 0.9381±0.0000 0.9195±0.0000 0.9307±0.0000 0.9287±0.0000 0.9327±0.0000

RMSL 0.5514±0.0029 0.4077±0.0021 0.2998±0.0019 0.3978±0.0014 0.3944±0.0014 0.4013±0.0014

WTNNM 0.9810±0.0000 0.9650±0.0000 0.9562±0.0000 0.9623±0.0000 0.9607±0.0000 0.9639±0.0000
MCLES 0.7133±0.0009 0.6828±0.0010 0.5508±0.0017 0.6181±0.0012 0.5733± 0.0013 0.6708±0.0012

MDcR 0.7790±0.0000 0.6853±0.0001 0.6013±0.0001 0.6569±0.0001 0.6537±0.0001 0.6601±0.0001

PLrSC 0.5924±0.0037 0.4877±0.0025 0.3732±0.0032 0.4616±0.0024 0.4543±0.0024 0.4693±0.0024

DMF-MVC 0.5093±0.0000 0.3543±0.0000 0.2188±0.0000 0.3329±0.0000 0.3164±0.0000 0.3512±0.0000

LeaSC 0.7752±0.0000 0.6442±0.0000 0.5643±0.0000 0.6254±0.0000 0.6188± 0.0000 0.6322±0.0000

HRMC 0.9810±0.0000 0.9604±0.0000 0.9558±0.0000 0.9619±0.0000 0.9613±0.0000 0.9626±0.0000

Webkb
†

tSVD-MSC 0.7143±0.0000 0.4132±0.0000 0.4503±0.0000 0.6650±0.0000 0.6695±0.0000 0.6605±0.0000

RMSL 0.4655±0.0020 0.0373±0.0002 0.0151±0.0006 0.4936±0.0028 0.3922±0.0001 0.6891±0.0267

WTNNM 0.7192±0.0000 0.4190±0.0000 0.4564±0.0000 0.6693±0.0000 0.6720±0.0000 0.6667±0.0000

MCLES - - - - - -

McDR 0.6695±0.0000 0.3289±0.0000 0.3746±0.0000 0.6026±0.0000 0.6499±0.0000 0.5617±0.0000

PLrSC 0.4567±0.0005 0.2078±0.0055 0.1444±0.0039 0.4284±0.0007 0.5133±0.0030 0.3709±0.0012

DMF-MVC - - - - - -

LeaSC 0.6744±0.0000 0.2595±0.0000 0.2891±0.0000 0.5979±0.0000 0.5412±0.0000 0.6679±0.0000

HRMC 0.7635±0.0001 0.4160±0.0000 0.4841±0.0000 0.6926±0.0000 0.6738±0.0000 0.7125±0.0000
†
Since the Webkb data is too sparse to compute SVD, we do not list the results of MCLES and DMF-MVC.

views and the local nonlinear structure as well as global similar-

ity structure of each view, thereby resulting in higher clustering

evaluation performance.

(2) Although the kernel-based multi-view clustering methods

likeMDcR can learn the nonlinear subspace structure and obtain the

low-dimensional feature of original data, MDcR has unsatisfactory

clustering performance on 100Leaves, MSRC, and Webkb datasets.

This is because the kernel function-based method is too rigorous in

the choice of the kernel function, and an inappropriate kernel may

lead to poor clustering results. However, the proposed HRMC uses

the deep autoencoder to adaptively learn the nonlinear structure

within input data and the latent representation, thereby performing

better than kernel-based methods.

Fig. 4 shows the visualization of different methods on MSRC

dataset, where different colors represent different clusters of sam-

ples. We observe that the sample distributions of Fig. 4(c) (WTNNM)

and Fig. 4(i) (our HRMC) have clearer boundaries than other base-

lines. Further comparing our HRMC with WTNNM as shown in

Fig. 4(c), the distance between clusters obtained by our HRMC in

Fig. 4(i) is larger. Moreover, the clustering results of the proposed

HRMC in Fig. 4(i) are the closest to the original ones in Fig. 4(j). The

visual comparison shows the superiority of the proposed method.

6 DISCUSSIONS

This section discusses the effects of different regularizations, the

influence of parameters, and the numerical convergence of our

HRMC.

6.1 Ablation Study

In the proposed method, the autoencoder is used to reconstruct the

view-specific local information, the self-expression term is used

to preserve the view-specific global structure, and the low-rank

tensor constraint focuses on exploring the higher-order correlation

between views. We evaluate the effect of each term by different

variants of our HRMC: HRMCwithout (w/o) nonlinear term, HRMC

w/o global structure, and HRMC w/o high-order correlation term.

Table 3 lists the clustering performance of different methods

on the simulated multi-view data (in Section 5.2.1). We observe

from Table 3 that the proposed HRMC achieves the best clustering

performance though its variant w/o high-order correlation term

has the second best performance and the other two variants have

the inferior performance. These results indicate that both the view-

specific local nonlinear structure and global structure priors play

an important role in enhancing the clustering performance.

Fig. 5 shows the visualization of clustering performance. It is

shown that the proposed HRMC can barely cluster the simulated

multi-view data without the nonlinear term or the global structure.

Provided with the low-rank tensor constraint (i.e., the high-order

correlation), the performance is further improved. This suggests

that these three terms complement and strengthen each other.

6.2 Parameter Analysis

The proposed method contains four parameters λ1, λ2, λ3, and β . In
this part, we investigate the influence of different parameters on the

proposed method. Taking the Wekbk dataset as an example, Fig. 6
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Table 3: Clustering performance of HRMC and its variants.

Method ACC NMI AR F-score Precision Recall

HRMC w/o nonlinear term 0.2813 0.0075 0.0026 0.2769 0.2508 0.3092

HRMC w/o global structure 0.2512 0.0074 0.0020 0.3982 0.2491 0.9925

HRMC w/o high-order correlation 0.9587 0.8895 0.8965 0.9224 0.9185 0.9264

HRMC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Figure 5: Effect of each term on HRMC for data clustering.

plots the ACC and NMI curves with respect to λ1, λ2, λ3, and β . We

observe that our HRMC is stable with varied parameters λ2 and

β . When λ2 and β vary in [1, 10] and [0.0001, 2], respectively, the

proposed HRMC can achieve the promising performance. Moreover,

we observe that the proposed method is sensitive with parameters

λ1 and λ3. Thus, we empirically set λ2 = 1, β = 0.0001, and tune λ1

and λ3 in [0.001, 0.1] with interval 0.004.

6.3 Convergence Analysis

We take BBCnews and Webkb datasets as examples and plot the

relative error curves as shown in Fig. 7. We observe that the rel-

ative error curves (vs. number of iterations) rapidly decrease to

zero, suggesting that the proposed algorithm numerically achieves

convergence.

7 CONCLUSION

In this work, we proposed a hierarchical representation learning

method with integration of intra-sample adaptive latent represen-

tation learning, intra-view global similarity structure learning, and

inter-view structure-preserved consistency learning for MVC. We

introduced the deep autoencoder to capture the nonlinear struc-

ture in each sample, and learned the self-repression of latent rep-

resentation to characterize the global similarity structure among

samples of a view. Moreover, we applied the tensor low-rank con-

straint to explore the high-order correlation among views. The

proposed method can fully capture both local and global structures

of view-specific and high-order correlation among views to obtain

the clustering results. Extensive numerical results demonstrate the

advantages of the proposed method in MVC. As one of future stud-

ies, our algorithm will be further extended to large-scale datasets.
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