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A B S T R A C T

To solve the incompleteness problem in temporal knowledge graphs (TKGs) and to discover the new knowledge,
TKG completion remains an essential task always solved by graph embedding technology. Existing TKG
completion methods encode time at only single granularity, which is insufficient in exploiting the rich
information of distinct time granularities. Furthermore, most of them lack a comprehensive consideration of
the characteristic of both time points and time periods, resulting in the inability to handle the two types of
facts with different time forms, namely the discrete facts and continuous facts, simultaneously. In this paper,
we propose a novel TKG embedding model which introduces the block term tensor decomposition and utilizes
the core tensor and factor matrices to capture information presented by facts under distinct time granularities.
By focusing on moments included in the time period and treating the discrete fact as a special case of the
continuous fact, the model manages the processing of different types of facts in a unified manner. Besides, we
explicitly design the static properties of entities and relations as well as their interactions to conform to reality.
Experiments on 3 real datasets of different types verify the effectiveness of our proposed method compared
with most state-of-the-art methods.
1. Introduction

A knowledge graph (KG) is a semantic information database that
describes the relationships between various entities in the real world.
It is typically expressed in the form of a multi-relational directed
graph, in which nodes represent entities and edges represent relations
between entities. Any two connected nodes and the edge between
them form a triple denoted as (subject, relation, object), abbreviated
as (𝑠, 𝑟, 𝑜) which is called a fact. Fig. 1 is an example of a knowledge
graph, where (Washington, IsCapitalOf, American) represents a fact
with subject Washington, relation IsCapitalOf and object American.
Due to the rich semantic information and powerful representation
capabilities, KGs have been applied to various fields, such as social
networks (Molokwu et al., 2020), question answering (Kacupaj et al.,
2021) and recommender systems (Lee et al., 2020).

However, because of the difficulty in collecting facts or even data
loss, practical KGs often fail to be complete, severely limiting their
usability and availability. In addition, the new knowledge is expected
to be inferred from the existing old knowledge to enrich the KGs. To
this end, an essential task named KG completion aims to predict the
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missing object or subject given other elements in the fact, i.e., an-
swers (𝑠, 𝑟, ?) or (?, 𝑟, 𝑜). Recently, a substantial amount of researches
employing graph embedding technique to conduct KG completion have
presented promising results, which embeds nodes and edges in the low-
dimensional continuous vector space, such as TransE (Bordes et al.,
2013), TransH (Wang et al., 2014) and RESCAL (Nickel et al., 2011).

Although there are numerous KG embedding methods, most of
them are designed for static knowledge graphs (SKGs), while tem-
poral knowledge graphs (TKGs) containing time information receive
relatively less attention. In TKGs, the time is attached to each fact
indicating when it is valid. According to the forms of the time, TKGs can
be classified into two categories : (i) discrete fact knowledge graphs, in
which the valid time of the fact is a time point, denoted as (𝑠, 𝑟, 𝑜, 𝑡𝑝),
for instance, ICEWS14 (García-Durán et al., 2018); (ii) continuous fact
knowledge graphs, in which the valid time of the fact is a time period,
denoted as (𝑠, 𝑟, 𝑜, [𝑡𝑏, 𝑡𝑒]) with 𝑡𝑏 and 𝑡𝑒 representing the beginning and
the end of the valid time, for instance, Wikidata12k (Dasgupta et al.,
2018). For the unity of forms, we denote both these two types of facts
as (𝑠, 𝑟, 𝑜, 𝑡).
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Fig. 1. An example of KG with various entities and relations.

Fig. 2. Different types of facts in TKGs including the discrete fact, the continuous fact
and the fact that remains true all the time, which are common in TKGs.

Unlike SKG embedding, TKG embedding is required to additionally
learn the time properties, and how to leverage the time informa-
tion effectively is exactly a crucial concern in the TKG completion.
Existing TKG embedding methods generally encode time to obtain
the time-specific representations for entities and relations, such as
Hyte (Dasgupta et al., 2018), TA-DistMult (García-Durán et al., 2018),
etc. However, these methods evaluate the plausibility of facts at a single
time scale, neglecting that the occurrence of a temporal fact is affected
by both the era background as well as the recent events. Besides,
the time in the form of points or periods both provide significant
information about the validity of facts, such as times in (Barack Obama,
make a visit, Malaysia, 2014-04-25) and (Barack Obama, is president
of, United States, [2008, 2017]) in Fig. 2 are crucial for political events.
As the existing models are established for the discrete facts and then
extended to the continuous ones, it leads to the limited consideration
of the properties of time periods and the incapability in dealing with
the discrete and continuous facts uniformly. Moreover, certain facts
in TKGs, like (Barack Obama, is father of,Malia Obama) as shown in
Fig. 2, remain true all the time, implying the constant interactions
between entities and relations which are disregarded by most of the
previous works. Therefore, the challenges of TKG completion problems
include exploiting temporal information of distinct granularities, uni-
formly handling discrete and continuous facts, and considering static
facts that are not affected by time. As shown in Fig. 2, these situations
are common in TKG and it is necessary to develop a method for them.

A KG can be regarded as a third-order binary tensor, with each
element 1 or 0 indicating whether the fact corresponding to the el-
ement’s index is valid or invalid. Therefore, we consider adopting a
powerful tensor decomposition method, the block term decomposition
2

(BTD) (De Lathauwer, 2008), to model complex signal information,
including static and temporal properties of facts, as well as discrete
and continuous properties of time. In this paper, we propose a novel
TKG embedding method utilizing Block Term Decomposition with distinct
time Granularities (BTDG), which extracts the information presented by
facts under the two different time granularities and takes the constant
interactions into account. Specifically, the block term decomposition
is employed to explicitly model the interactions among temporal and
static properties of entities and relations, with the core tensor and the
component matrices to capture coarse-grained and fine-grained time
information respectively, in which way discrete and continuous facts
are processed in a unified manner. Therefore, our method considers
both static and temporal properties of facts in TKG, and focuses on
distinct granularity information in time, while providing a method for
unified processing of discrete and continuous facts.

Our contributions are summarized as follows:

• We propose to encode the fine-grained and coarse-grained time
information of facts under the two distinct granularities through
the component matrices and the core tensor in BTD, leading to a
more comprehensive evaluation of facts.

• We explicitly model the static properties of entities and relations
as well as their interactions to conform to reality.

• The proposed model BTDG unifies the processing in handling
discrete and continuous facts without the special preprocessing
for certain types of data.

• Experiments conducted on three real-world datasets of different
types exhibit that BTDG outperforms most previous state-of-the-
art methods.

2. Related work

2.1. SKG embedding methods

Mainstream SKG embedding methods can be classified into three
categories based on their loss functions: translational distance models,
semantic matching models, and GNN-based models.

Translational distance models
Translational distance models propose that if a fact exists, the

subject should be close to the object after the translation of the relation,
with a function to measure the distance. The most typical method is
TransE (Bordes et al., 2013). Due to the defect of TransE in modeling
1-𝑛, 𝑛-1 and 𝑛 − 𝑛 relations, many extensions based on TransE are pro-
posed, including TransH (Wang et al., 2014), TransR (Lin et al., 2015),
etc. For more powerful generalization, RotatE (Sun et al., 2019) regards
the relation as the rotation of the subject embedding in the complex
space, and KG2E (He et al., 2015) takes the uncertainties of entities and
relations into consideration, modeling their representations as Gaussian
distributions. ATransD-NL (Wang et al., 2021) learns attention-based
embeddings taking into account the influence of one-hop or potentially
multi-hop neighborhood entities and applies the nonlinear dynamic
projection to capture nonlinear correlations.

Semantic matching models
Semantic matching models measure the plausibility of triples by

matching the representations of entities and relations in the embed-
ding space with a similarity-based scoring function. RESCAL (Nickel
et al., 2011) is the representative method that uses the matrix to
model the relation. DistMult (Yang et al., 2015) simplifies RESCAL
by restricting the relation matrix to be diagonal. However, neither
RESCAL nor DistMult can model asymmetric relations. To combine
the advantages of simplicity and powerful expressive ability, Sim-
plE (Kazemi & Poole, 2018) and ComplEx (Trouillon et al., 2016) are
proposed. MEI (Tran & Takasu, 2020) proposes the multi-partition em-
bedding interaction model with the block term format, which learns the

interaction mechanism automatically through the Tucker core tensors.
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Since a KG can be regarded as a 0–1 third-order tensor  , common
echniques for tensor decomposition are considered by recent works in-
luding Candecom/Parafac (CP) decomposition, Tucker decomposition
nd block term decomposition. CP (Lacroix et al., 2018) decomposes
he KG into a sum of component rank-one tensors, which is formulated
s  ≈

∑𝐾
𝑘=1 𝐬

(𝑘)◦ 𝐫(𝑘)◦ 𝐨(𝑘), where ◦ is the outer product operation,
(𝑘) ∈ R𝑑𝑠 , 𝐫(𝑘) ∈ R𝑑𝑟 and 𝐨(𝑘) ∈ R𝑑𝑜 are vectors composed of the 𝑘th
imension elements of the embedding of each subject, relation and
bject, and 𝑑𝑠, 𝑑𝑟 and 𝑑𝑜 denote the dimensions of the subjects, relations
nd objects, respectively. TuckER (Balazevic et al., 2019) decomposes
he KG into a core tensor and three component matrices, which is
ormulated as  ≈  ×1 𝐒 ×2 𝐑 ×3 𝐎, where  ∈ R𝑑𝑠×𝑑𝑟×𝑑𝑜 are core
ensors, 𝐒 ∈ R𝑛𝑒×𝑑𝑠 , 𝐑 ∈ R𝑛𝑟×𝑑𝑟 and 𝐎 ∈ R𝑛𝑒×𝑑𝑜 are factor matrices
n which each row is the embedding of the corresponding entity or
elation. The operation ×𝑛 is the 𝑛-mode product between the tensor
nd the matrix. BTD as the generalization of CP decomposition and
ucker decomposition is also employed by Luo et al. (2020). It has been
roved that the above bilinear models are the special cases of Tucker
ecomposition model (Balazevic et al., 2019).

NN-based models
Some existing works introduce graph neural networks to KGs.

onvE (Dettmers et al., 2018) introduces convolutional layers to model
omplex interactions between entities and relations. SACN (Shang
t al., 2019) utilizes graph connectivity structure by combining
eighted graph convolutional network and ConvE. CompGCN

Vashishth et al., 2020) is a graph convolutional based framework
hat leverages the entity-relation composition operations from KGC
odels including TransE and DistMult to update entity embeddings.
E-GCN (Yu et al., 2021) updates both entity and relation embed-
ings by graph convolution operation leveraging various knowledge
mbedding techniques.

.2. TKG embedding methods

Most of the existing TKG embedding methods are extensions based
n the previous SKG embedding researches, the idea of which is to learn
ime-specific representations for entities and relations. HyTE (Dasgupta
t al., 2018) projects embeddings of entities and relations onto the
ime-specific hyperplane. TA-TransE (García-Durán et al., 2018) treats
elations and timestamps as the predicate sequence which then feeds
nto LSTM. TTransE (Leblay & Chekol, 2018) explores a variety of
xtensions of TransE. In DE-TransE (Goel et al., 2020), the timestamp
s used to modulate a part of the embeddings of entities and relations.
TiSE (Xu et al., 2019) follows the idea of KG2E and introduces
dditive time series decomposition. TNTComplEx (Lacroix et al., 2020)
xtends ComplEx, establishing time as the fourth dimension. TeRo (Xu
t al., 2020) regards time as a transformation in complex space. In
ddition, there are related works that consider the TKG completion
ask from other different perspectives. CyGNet (Zhu et al., 2021) com-
ines two modes of inference to make predictions based on either the
istorical vocabulary or the whole entity vocabulary through a copy
echanism. Ding et al. (2021) extends the idea of continuum-depth
odels to TKG, capturing temporal information through the neural

rdinary differential equation and structural information through a
NN.

The above TKG embedding methods are generally designed for dis-
rete facts, and develop different strategies to extend to the continuous
ase. The several mainstream approaches are as follows. (1) The time
xis is divided according to the distribution of facts so that the events
re evenly distributed on the divided time period. Then the original
ime annotation is displaced by the divided time period and treated as a
ime point. This strategy which HyTE and TeRo adopt, cannot carefully
ccount for the properties of time periods. (2) A continuous fact is
iscretized into a series of discrete facts in TTransE, obviously leading
3

o a multiplied increase in computational cost. (3) Only the beginning
ime and end time of the time period are utilized in TA-TransE and
NT-ComplEx, losing the intermediate time information. (4) Some
ethods like DE-TransE only conducted experiments on discrete fact
atasets regardless of continuous facts. In summary, it is a challenge
or the existing works to process the discrete facts and continuous facts
niformly and reasonably.

. Model

A TKG  is composed of a series of snapshots {(1),(2),… ,(𝑇 )},
where (𝑡𝑝) contains all valid facts {(𝑠, 𝑟, 𝑜, 𝑡𝑝)} at time 𝑡𝑝, 𝑠 ∈  , 𝑟 ∈
, 𝑜 ∈  , 𝑡𝑝 ∈  , with  denoting the set of entities,  the set
of relations and  the set of time points. The latent representations
learned for each subject, relation and object are denoted as their bold
letters 𝐬, 𝐫 and 𝐨 respectively. Our goal is to maximize the score
𝑓 (𝑠, 𝑟, 𝑜, 𝑡) for all observed facts.

Fig. 3 illustrates the overall framework where BTD with two com-
ponent tensors is introduced to establish different properties (temporal
and static properties) of entities and relations. Further, in the temporal
component tensor, the component matrices of entities (𝐬𝑡 and 𝐨𝑡) focus
on the fine-grained time information, while the core tensor (𝑡) collects
the coarse-grained time information. In this process, the calculation
techniques of discrete facts (𝑡 = 𝑡𝑝) and continuous facts (𝑡 = [𝑡𝑏, 𝑡𝑒])
are unified.

3.1. Block term decomposition

Considering the observation that the interaction of certain entities
and relations in TKGs does not change over time, the properties of
entities and relations are split into two parts, one of which is affected
by time while the other is static and remains the same at all times.
Representations corresponding to static and temporal properties are
trained for entities and relations, which further are used to obtain
the plausibility scores of their interactions. The scoring function of a
temporal fact (𝑠, 𝑟, 𝑜, 𝑡) consisting of two portions is explored as:

𝑓 (𝑠, 𝑟, 𝑜, 𝑡) = 𝑓𝑡𝑒𝑚𝑝(𝑠, 𝑟, 𝑜, 𝑡) + 𝑓𝑢(𝑠, 𝑟, 𝑜), (1)

where 𝑓𝑡𝑒𝑚𝑝 encodes the interactions among dynamic temporal prop-
erties, while 𝑓𝑢 encodes the interactions among static properties un-
changed over time. Note that 𝑡 = 𝑡𝑝 for discrete facts and 𝑡 = [𝑡𝑏, 𝑡𝑒] for
continuous facts.

Recall that a KG can be regarded as a third-order binary tensor  ∈
R𝑛𝑒×𝑛𝑟×𝑛𝑒 , in which the element 0 or 1 indicates the fact corresponding
to the index is invalid or valid. 𝑛𝑒 and 𝑛𝑟 denote the number of enti-
ties and relations. Several tensor decomposition techniques have been
researched by recent works to practice in KG embeddings, including
CP (Lacroix et al., 2018) and TuckER (Balazevic et al., 2019).

In this work, another tensor decomposition technique BTD, as the
generalization of both CP decomposition and Tucker decomposition, is
considered to equip our model with a more powerful expression and
generalization capability. BTD admits the modeling of more complex
signal components than CP decomposition, and acquires the uniqueness
under more restrictive but still fairly natural conditions than TKD (Ma
et al., 2019; Ye et al., 2018). From the scene of TKG, BTD introduces
multiple core tensors to capture the different aspects of correlations
among the three dimensions (i.e., the subject, relation and object).
Therefore, BTD fits the scene of the TKG very well, where entities and
relations have rich semantic information, including the static property
and temporal property of the entities. BTD with two component tensors
is adopted to decompose  :

 ≈ 1 ×1 𝐒1 ×2 𝐑1 ×3 𝐎1 + 2 ×1 𝐒2 ×2 𝐑2 ×3 𝐎2, (2)

where 1 ∈ R𝑑𝑠×𝑑𝑟×𝑑𝑜 and 2 ∈ R𝑑𝑠×𝑑𝑟×𝑑𝑜 are core tensors, 𝐒1,𝐒2 ∈
𝑛𝑒×𝑑𝑠 , 𝐑1,𝐑2 ∈ R𝑛𝑟×𝑑𝑟 and 𝐎1,𝐎2 ∈ R𝑛𝑒×𝑑𝑜 are factor matrices, and
𝑠, 𝑑𝑟 and 𝑑𝑜 denote the dimensions of the subjects, relations and
bjects, respectively. The operation × is the 𝑛-mode product between
𝑛
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Fig. 3. Illustration of BTDG. Based on the block term decomposition, our model establishes temporal and static properties of entities and relations, focusing on the fine-grained
and coarse-grained time information for both discrete and continuous facts uniformly. BTD with two component tensors is applied to model the score of a fact in the TKG. The
blue and the orange block represent the temporal and the static portion respectively (corresponding to Eq. (3)). In the first component tensor, the capture of fine-grained time
information for the subject corresponds to the pink boxes (corresponding to Eq. (4) and (5), and the relevant part for the object corresponding to Eqs. (6) and (7) is omitted in the
figure), while the capture of coarse-grained time information corresponds to the green boxes (corresponding to Eq. (8)). The solid-line boxes and the dashed-line boxes illustrate
the case of discrete facts and continuous facts.
w

the tensor and the matrix. 𝐒1 and 𝐒2 are the two embedding matrices
of subjects, where each row of each matrix is the embedding of the
corresponding subject. Similarly, 𝐑1 and 𝐑2 as well as 𝐎1 and 𝐎2 are
the embedding matrices of relations and objects. After the embeddings
of these entities and relations are calculated with the core tensor 1
and 2, the credibility score of the corresponding fact can be obtained.

Naturally, two terms in BTD are used to model the interactions
among different types of properties, which attributes to a more com-
prehensive evaluation of facts. For a temporal fact (𝑠, 𝑟, 𝑜, 𝑡), the scoring
function in Eq. (1) is reformulated as:

𝑓 (𝑠, 𝑟, 𝑜, 𝑡) = 𝑡 ×1 𝐬𝑡 ×2 𝐫𝑡 ×3 𝐨𝑡 + 𝑢 ×1 𝐬𝑢 ×2 𝐫𝑢 ×3 𝐨𝑢, (3)

where 𝐬𝑡 ∈ R𝑑𝑠 , 𝐫𝑡 ∈ R𝑑𝑟 , 𝐨𝑡 ∈ R𝑑𝑜 denote the temporal representations,
ith 𝑡 ∈ R𝑑𝑠×𝑑𝑟×𝑑𝑜 capturing the temporal property interactions, and

𝑢 ∈ R𝑑𝑠 , 𝐫𝑢 ∈ R𝑑𝑟 , 𝐨𝑢 ∈ R𝑑𝑜 denote the unchanged static represen-
ations, with 𝑢 ∈ R𝑑𝑠×𝑑𝑟×𝑑𝑜 capturing their interactions. The form of
q. (3) is inspired by Eq. (2). If only one fact (containing one subject,
ne relation, and one object) is considered in Eq. (2), Eq. (3) can be
btained.

.2. Fine-grained and coarse-grained

This section describes how 𝑓𝑡 collects information presented by facts
nder two distinct time granularities.

ine-grained
Note that 𝐬𝑡, 𝐨𝑡 are latent representations of 𝑠 and 𝑜 corresponding to

ime 𝑡 to study fine-grained time information. Taking 𝐬𝑡 with 𝑡 = [𝑡𝑏, 𝑡𝑒]
as an example, representations of 𝑠 at each time point included in
[𝑡𝑏, 𝑡𝑒] are taken into consideration, namely {𝐬𝑡𝑏 , 𝐬𝑡𝑏+1,… , 𝐬𝑡𝑒}, which are
defined as:

𝐬𝑡𝑝 = 𝐬𝑡𝑒𝑚𝑝 ⊙ 𝜏𝑠𝑡𝑝 , (4)

for 𝑡𝑝 ∈ [𝑡𝑏, 𝑡𝑒], where 𝜏𝑠𝑡𝑝 ∈ R𝑑𝑠 is the representation of the time point
𝑡𝑝 for subjects, which learns the time characteristics and establishes
a connection between subjects since it is shared by 𝐬𝑡𝑝 for all 𝑠. 𝐬𝑡𝑒𝑚𝑝
4

denotes the temporal part of the embedding of 𝑠 acting as its temporal
Fig. 4. The meanings of notations on the timeline.

properties. The operator ⊙ is Hadamard product. Then 𝐬𝑡 is calculated
as their average:

𝐬𝑡 = 𝑀𝑒𝑎𝑛(𝐬𝑡𝑝 ), 𝑡𝑝 ∈ [𝑡𝑏, 𝑡𝑒]. (5)

Obviously, for the discrete case of 𝑡 = 𝑡𝑝, 𝐬𝑡 can be directly obtained
by Eq. (4), while Eq. (5) is omitted since there exists only one time
point in 𝑡. Therefore, the calculation of discrete facts and continuous
facts is essentially the same.

With the notations of similar meanings, the object representation 𝐨𝑡
ith 𝑡 = [𝑡𝑏, 𝑡𝑒] or 𝑡 = 𝑡𝑝 is obtained as follows:

𝐨𝑡𝑝 = 𝐨𝑡𝑒𝑚𝑝 ⊙ 𝜏𝑜𝑡𝑝 , (6)

𝐨𝑡 = 𝑀𝑒𝑎𝑛(𝐨𝑡𝑝 ), 𝑡𝑝 ∈ [𝑡𝑏, 𝑡𝑒]. (7)

By focusing on each included time point in the time period, facts
are evaluated on a fine-grained time scale, and in this process, discrete
and continuous facts are processed uniformly.

Coarse-grained
The core tensor 𝑡 models the interaction of entities and relations in

time 𝑡 and studies the coarse-grained time information. A rule is firstly
explored to construct the coarse-grained time periods. For a TKG, a
granularity 𝛥𝑡 is selected so that multiple fine-grained time points are
included in a coarse-grained time period corresponding to a specific .

Taking 𝑡 with 𝑡 = [𝑡𝑏, 𝑡𝑒] as an example, the time period [𝑡𝑏, 𝑡𝑒] spans
one or several coarse-grained time periods. Considering a general case
of spanning 𝐾 time periods, the corresponding core tensor is defined
as:

𝑡 = [𝑡𝑏 ,𝑡𝑒] =
𝐾
∑

𝑤𝑘 [𝑡1(𝑘),𝑡2(𝑘)], 𝐾 = (𝑡′𝑒 − 𝑡′𝑏)∕𝛥𝑡 (8)

𝑘=1
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with 𝑡1(𝑘) = 𝑡′𝑏 + (𝑘 − 1)𝛥𝑡 and 𝑡2(𝑘) = 𝑡′𝑏 + 𝑘𝛥𝑡. 𝑡′𝑏 and 𝑡′𝑒 are the
ime points closest to 𝑡𝑏 and 𝑡𝑒 under the division of 𝛥𝑡 and satisfy
𝑡𝑏, 𝑡𝑒] ⊆ [𝑡′𝑏, 𝑡

′
𝑒]. 𝑤𝑘 = 𝑡2(𝑘)−𝑡1(𝑘)

𝑡𝑒−𝑡𝑏
is a weight coefficient equal to the

roportion of the time period represented by the corresponding  in
𝑡𝑏, 𝑡𝑒], thus ∑𝐾

𝑘=1 𝑤𝑘 = 1. Fig. 4 describes the meanings of these
otations on the time axis. For example, if the selected granularity is
0 years and the valid time period of the fact is set to [2006, 2021], the
ore tensor  is calculated as [2006,2021] =

4
16[2006,2009] +

10
16[2010,2019] +

2
16[2020,2021]. The idea of providing independent embedding for each
coarse-grained time slice is similar to the position encoding technique
in Transformer (Vaswani et al., 2017). But unlike Transformer, which
encodes position information of tokens in the sequence, our model is
not equipped with this feature, and we plan to address this in the future.

As for the case of 𝑡 = 𝑡𝑝, the discrete fact can be regarded as a special
form of the continuous fact with 𝑡𝑏 = 𝑡𝑒 = 𝑡𝑝. Hence, Eq. (8) can be
directly adopted for the calculation of 𝑡𝑝 with 𝐾 = 1, but applying
a different definition of 𝑤 = 1. The core tensor 𝑡𝑝 for discrete facts
rovides the context of time period containing 𝑡𝑝 of interest, acting as
ackground information.

In summary, 𝐬[𝑡𝑏 ,𝑡𝑒] and 𝐨[𝑡𝑏 ,𝑡𝑒] capture the properties of entities and
elations at each intermediate time point from 𝑡𝑏 to 𝑡𝑒, while [𝑡𝑏 ,𝑡𝑒]
aptures the complex interaction on the coarse-grained time scale.
herefore, the model can capture two time-granularity information and
valuate the plausibility of facts from distinct scales in a unified manner
or both discrete and continuous cases.

.3. Time smoothness

In addition, we assume that the evolution of real-world KGs is
enerally smooth without sudden changes, and the adjacent time points
xhibit similar properties. Therefore, a time smoothness term is added
o the final loss function for the penalty of mutation:

𝑠𝑚𝑜𝑜𝑡ℎ = 𝑀𝑒𝑎𝑛((𝜏𝑠𝑖 − 𝜏𝑠𝑖−1) + (𝜏𝑜𝑖 − 𝜏𝑜𝑖−1)), 𝑖 ∈ [𝑡𝐵 + 1, 𝑡𝐸 ], (9)

here 𝑡𝐵 and 𝑡𝐸 refer to the earliest time and the latest time in the
hole TKG.

.4. Training

The predicted probability of a fact is defined as:

(𝑠, 𝑟, 𝑜, 𝑡) = 𝜎(𝑓 (𝑠, 𝑟, 𝑜, 𝑡)), (10)

here 𝜎(⋅) represents the sigmoid function. The binary cross entropy
or 1-N scoring (Dettmers et al., 2018) is employed to train BTDG, and
he final loss function is:

= − 1
𝑛𝑞

∑

𝑖
(𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)) + 𝛼𝑠𝑚𝑜𝑜𝑡ℎ, (11)

where 𝑝𝑖 represents the predicted probability of the 𝑖th fact, and 𝑦𝑖

represents its true label. 𝛼 is a hyperparameter weighing the importance
of time smoothness.

4. Experiments

4.1. Experimental setup

Datasets
Two discrete fact datasets and a continuous dataset are used to

verify the performance of BTDG.

• ICEWS14 and ICEWS05-15 are two discrete fact datasets cre-
ated by García-Durán et al. (2018). They are both the subset
of ICEWS (Lautenschlager et al., 2015), containing the political
5

events with timestamps in 2014 and 2005–2015 respectively. H
Table 1
Statistics of datasets.

Dataset #Entities #Relations #Time steps Time span

ICEWS14 7,128 230 365 2014.01.01–2014.12.31
ICEWS05–15 10,488 251 4,017 2005.01.01–2015.12.31
Wikidata12k 12,255 24 – 19–2020

• Wikidata12k (Dasgupta et al., 2018) is a continuous fact dataset.
The start time and end time of the time period in facts are in the
form of (year-month-day). Since most of the records of months
and dates are missing, we only utilize the years as total time
annotations ignoring months and dates.

The statistics of the datasets are summarized in Table 1.

Baselines
The performance of BTDG is compared against both SKG and TKG

embedding methods.

(a) SKG embedding methods
SKG embedding methods ignore the time information and treat

the TKG as a collection of snapshots at each time point, i.e.,  =
∪𝑡(𝑡). We select typical representative methods mentioned before, in-
cluding: TransE (Bordes et al., 2013), DistMult (Yang et al., 2015),
ComplEx (Trouillon et al., 2016) and RotatE (Sun et al., 2019).

TransE is a classic translational distance model with scoring func-
tion ‖𝐡 + 𝐫 − 𝐭‖. DistMult is a semantic matching model with scoring
function ‖𝐡⋅𝐫 ⋅𝐭‖. ComplEx models entities and relations in the complex
space, and RotatE models the relations as rotations in the complex
plane.

(b) TKG embedding methods
HyTE (Dasgupta et al., 2018), TTransE (Leblay & Chekol, 2018),

TA-TransE, TA-DistMult (García-Durán et al., 2018), DE-SimplE (Goel
et al., 2020), ATiSE (Xu et al., 2019) and TeRo (Xu et al., 2020) are
selected as TKG embedding baselines.

HyTE projects embeddings of entities and relations onto the time-
specific hyperplane. TTransE explores a variety of extensions of TransE.
TA-TransE and TA-DistMult treat relations and timestamps as the pred-
icate sequence which then feeds into LSTM. In DE-TransE, the times-
tamp is used to modulate a part of the embeddings of entities and
relations. ATiSE follows the idea of KG2E and introduces additive time
series decomposition. TeRo regards time as a transformation in complex
space.

Since DE-SimplE is designed for the discrete facts and does not
provide an approach to extend to continuous ones, we only use it as
the baseline on the discrete fact dataset.

Evaluation metrics
For each fact (𝑠, 𝑟, 𝑜, 𝑡) in the test set, we make predictions from

both sides for each test fact, i.e., complete (𝑠, 𝑟, ?, 𝑡) and (?, 𝑟, 𝑜, 𝑡). Refer
to the test phase in Bordes et al. (2013), for each query (𝑠, 𝑟, ?, 𝑡)
((?, 𝑟, 𝑜, 𝑡) similarly), we first calculate the scores of each candidate fact
in {(𝑠, 𝑟, 𝑜𝑐 , 𝑡)|𝑜𝑐 ∈ }, and then report the rank of the score of the
correct one (𝑠, 𝑟, 𝑜, 𝑡) among all scores. In order to ensure all candidate
acts except the test fact are corrupted negative samples, it is necessary
o remove the facts in the train set, validation set and test set (except for
he test fact of interest) in advance which actually acts as the correct
nes from the candidate fact set. The result after such processing is
alled ‘‘filtered’’.

The evaluation metrics are Hits@𝑛 defined as the proportion of the
est facts whose rank is in the top 𝑛, and mean reciprocal rank (MRR)
efined as the average of the reciprocal ranks of all test facts. We report

its@1, Hits@3, Hits@10 and MRR in filtered settings for each dataset.
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Table 2
Experimental results of comparative study.

ICEWS14 ICEWS05-15 Wikidata12k

Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR

TransE .094 – .637 .280 .090 – .663 .294 .100 .192 .339 .178
DistMult .323 – .672 .439 .337 – .691 .456 .119 .238 .460 .222
ComplEx .347 .527 .716 .467 .362 .535 .729 .481 .123 .253 .436 .233
RotatE .291 .478 .690 .418 .164 .355 .595 .304 .116 .236 .461 .221

TTransE .074 – .601 .255 .084 – .616 .271 .096 .184 .329 .172
HyTE .108 .416 .655 .297 .116 .445 .681 .316 .098 .197 .333 .180
TA-TransE .095 – .625 .275 .096 – .668 .299 .030 .267 .429 .178
TA-DistMult .363 – .686 .477 .346 – .728 .474 .122 .232 .447 .218
DE-SimplE .418 .592 .725 .526 .392 .578 .748 .513 – – – –
ATiSE .436 .629 .750 .550 .378 .606 .794 .519 .175 .317 .481 .280
TeRo .468 .621 .732 .562 .469 .668 .795 .586 .198 .320 .507 .299

BTDG .516 .656 .753 .601 .534 .687 .798 .627 .214 .351 .523 .314
(4.8%) (2.7%) (0.3%) (3.9%) (6.5%) (1.9%) (0.3%) (4.1%) (1.6%) (3.1%) (1.6%) (1.5%)
Table 3
Experimental results of ablation study.

ICEWS14 Wikidata12k

Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR

BTDG .516 .656 .753 .601 .214 .351 .523 .314

BTDG w/o temporal .361 .533 .698 .474 .160 .291 .498 .264
BTDG w/o static .482 .605 .681 .554 .185 .282 .426 .264
BTDG w/o fined .434 .610 .745 .542 .207 .349 .508 .307
BTDG w/o coarse .509 .648 .746 .593 .197 .331 .520 .299
BTDG w/o smoothness .502 .614 .709 .573 .212 .333 .477 .301
Implementation
All the experiments are implemented by PyTorch and trained with

Adam optimizer. The codes of our paper are available online:
https://github.com/JaneYul/BTDG.

For ICEWS14 and ICEWS05-15, the coarse time granularity 𝛥𝑡 is
selected from {year, quarter, month}, the learning rate 𝑙𝑟 from {0.0005,
0.001, 0.005, 0.001}, the dimension of entity embedding 𝑑𝑒 from {30,
50, 100, 150, 200} (let 𝑑𝑠 = 𝑑𝑜 = 𝑑𝑒), the dimension of relation embed-
ding 𝑑𝑟 from {20, 30, 50, 100}, and the time smoothing weight 𝛼 from
1, 0.1, 0.01, 0.001}. For Wikidata12k, the coarse time granularity 𝛥𝑡
s selected from {century, decade, 5 years}, and the set of candidate
alues for 𝑙𝑟, 𝑑𝑒, 𝑑𝑟, and 𝛼 are the same as that in ICEWS.

In our implementation, the parameters used in ICEWS14 are: 𝛥𝑡 =
onth, 𝑙𝑟 = 0.001, 𝑑𝑒 = 200, 𝑑𝑟 = 50, 𝛼 = 0.01. The parameters used in

CEWS05-15 are: 𝛥𝑡 = quarter, 𝑙𝑟 = 0.001, 𝑑𝑒 = 100, 𝑑𝑟 = 50, 𝛼 = 0.01.
The parameters used in Wikidata12k are: 𝛥𝑡 = 5 years, 𝑙𝑟 = 0.001,
𝑑𝑒 = 30, 𝑑𝑟 = 20, 𝛼 = 0.1. We observe the best parameter 𝑑𝑒 and 𝑑𝑟 in

ikidata12k are smaller than that in ICEWS, which may be due to the
ess relation in Wikidata12k. The values of more detailed parameters
re listed in the code link.

.2. Comparative study

The experimental results of BTDG and baselines are shown in Ta-
le 2, where the best results are marked in bold and the second best
esults are underlined. All results of baselines are taken from Xu et al.
2020). BTDG outperforms all the competitors on the three datasets and
e report the increases of BTDG results relative to the suboptimal ones

n parentheses.

erformance and analysis on the discrete fact datasets
On both ICEWS14 and ICEWS05-15, the performance improvement

f BTDG relative to the second best baseline on Hits@1 and Hits@3
s greater than that on Hits@10, which means the development of
TDG is mainly reflected in the capacity to improve the ranking of the
orrect answer to the top three and the first. All these baselines lack in
xtracting information from different time scales, and the deficiency of
heir performance indicates the effectivity of the coarse and fine time
cales BTDG explores.
6

Performance and analysis on the continuous fact dataset
On the continuous fact dataset, BTDG also outperforms all the

baselines, which can be attributed to the more detailed modeling of
the continuous fact with its time period. Comparing the experimental
results of ATiSE and TeRo on different types of datasets, it is observed
that the performance of ATiSE on the continuous fact dataset is worse
than TeRo, while Hits@3 and Hits@10 reported on the discrete fact
dataset ICEWS14 by ATiSE achieve better results on the contrary, which
indicates these two methods lack a unified focus on different types of
data. In contrast, BTDG provides a unified processing architecture for
two types of temporal facts, and obtains the best performance on both
types of datasets.

4.3. Ablation study

In order to verify the effectiveness of the various components in
BTDG, we conduct a series of ablation experiments on two different
types of datasets, including ICEWS14 and Wikidata12k, to explore how
each part in BTDG works for different types of facts.

Specifically, we report the experimental results after the following
five components of the model are removed respectively.

(a) Temporal information
Any parameters related to time are removed, and the first term

in BTD is replaced with the same form as the second term, but with
different parameters:

𝑓 (𝑠, 𝑟, 𝑜, 𝑡) = (1)𝑢 ×1 𝐬(1)𝑢 ×2 𝐫(1)𝑢 ×3 𝐨(1)𝑢 + (2)𝑢 ×1 𝐬(2)𝑢 ×2 𝐫(2)𝑢 ×3 𝐨(2)𝑢 ,

This model is denoted as ‘‘BTDG w/o temporal’’.

(b) Static properties
Exclude the static properties, i.e., remove the first term 𝑓𝑢(𝑠, 𝑟, 𝑜) in

the scoring function and only reserve the second term 𝑓𝑡𝑒𝑚𝑝(𝑠, 𝑟, 𝑜, 𝑡).
This model is denoted as ‘‘BTDG w/o static’’.

(c) Fine time granularity
Remove the design of fine time granularity. This model is denoted
as ‘‘BTDG w/o fined’’.

https://github.com/JaneYul/BTDG
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Fig. 5. The impact of distinct values of 𝑑𝑒 and 𝑑𝑟 on ICEWS14.
Fig. 6. The impact of distinct coarse time granularity.
(d) Coarse time granularity
Remove the design of coarse time granularity. This model is denoted

as ‘‘BTDG w/o coarse’’.

(e) Time smoothness
The time smoothing penalty term is removed in the loss function,

i.e., the coefficient 𝛼 is set to 0. This model is denoted as ‘‘BTDG w/o
smoothness’’.

All experimental results are shown in Table 3. When some compo-
nents of the model are removed, the performance decreases to varying
degrees, which implies they all work. By analyzing the difference in
the decline of model performance, the specific role played by each
component of the model can be inferred. In detail, we obtain the
following conclusions.
7

Time information and static attributes
On ICEWS14, the experimental result of ‘‘BTDG w/o temporal’’

is worse than that of ‘‘BTDG w/o static’’, indicating that the time
information in BTDG plays a more significant role, which is consistent
with our intuition. On Wikidata12k, the MRRs of the two models are
similar. We speculated that it may be due to the long-tail characteristic
of Wikidata12k which makes it more difficult for the model to collect
time information. The time points in ICEWS14 are evenly distributed,
while the facts in Wikidata12k are mainly concentrated after 1900.

Fine time granularity and coarse time granularity
On ICEWS14, Hits@1 reported by ‘‘BTDG w/o fined’’ is significantly

higher than that of ‘‘BTDG w/o coarse’’. However, the superiority of the
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Fig. 7. The impact of distinct values of 𝛼.
Table 4
Statistics of time overhead. (IC14, IC15 and Wiki are shorthand for ICEWS14, ICEWS05-15 and Wikidata12k).

BTDG TeRo ATiSE

IC14 IC15 Wiki IC14 IC15 Wiki IC14 IC15 Wiki

Training time per epoch (s) 93 489 66 4.34 22.12 3.53 6.98 35.68 28.04
Num of epochs 150 100 150 5000 4000 900 5000 2250 400
Total training time (s) 13 950 48 900 9900 21 700 88 480 3177 34 750 80 280 11 216
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‘‘BTDG w/o fined’’ on Hits@3 is not as obvious as that on Hits@1, and
Hits@10s reported by the two methods are similar. It can be inferred
that the fine-grained time information is more critical than coarse-
grained time information on ICEWS14, because in discrete fact datasets,
the form of time representation is originally a fine-grained time point
with coarse-grained time as auxiliary information. On Wikidata12k,
the experiment shows the opposite results. For the time period in
the continuous facts, it is more effective to capture time information
through a coarse time scale.

Time smoothness
For the two datasets, after removing the time smoothing term, the

performance degradation of the model on Hits@10 is more obvious,
while the impact on Hits@1 is less. It can be seen that the time
smoothing term promotes the ranking of the correct entity into the top
10, and the assumption that the representations of adjacent time points
are similar to each other in the latent space is reasonable.

4.4. Parameter study

Dimension of entity and relation
In the comparative study on ICEWS14, the values of 𝑑𝑒 and 𝑑𝑟 we

selected for BTDG are 200 and 50. Now we examine the effect of
distinct values of 𝑑𝑒 and 𝑑𝑟 on the performance of the model when the
ther parameter are fixed respectively.

Fig. 5 illustrates the experimental results (including four evaluation
etrics) obtained when 𝑑𝑒 is fixed at 200 and 𝑑𝑟 is set to various values

(corresponding to the blue line), and when 𝑑𝑟 is fixed at 50 and 𝑑𝑒 is
set to various values (corresponding to the green line). The red line in
the figure is the result when 𝑑𝑒 = 200 and 𝑑𝑟 = 50, which is adopted in
the comparative study.

It can be observed from the experimental results that different
values of 𝑑𝑒 have a large impact on the performance of our model. As
𝑑𝑒 decreases, the four indicators all have different degrees of obvious
decline. On the other hand, when 𝑑𝑒 is fixed and 𝑑𝑟 changes, the
reported values of the four indicators have little change (except for
hits@10, which fluctuates relatively large). The performance of the
model remains at a relatively stable level even when 𝑑𝑟 takes a small
value (such as 10 and 20).

Based on the above observations, it can be concluded that larger
8

dimensions are required to store information of entities due to their s
rich semantics, while the semantics of the relations are relatively clear
and single, and the relations need to model the interaction between
numerous various entities, so satisfying results can be obtained with
small dimensions.

Coarse time granularity
We also investigated the influence of the selection of different

coarse time granularities on the model’s performance. Fig. 6 shows the
experimental results of ICEWS14 and Wikidata12k. We find that too
coarse granularity is not conducive to model performance.

Time smoothness coefficient
In addition, we explore the impact of the hyperparameter 𝛼 in the

time smoothness term on the performance of BTDG. Fig. 7 exhibits
Hits@10s and MRRs reported by ICEWS14 and Wikidata12k under
different values of 𝛼. The proposed method reaches a satisfactory and
stable performance when 𝛼 is between 0.005 and 0.01 on ICEWS14, or
between 0.05 to 1 on Wikidata12k.

.5. Efficiency study

ime overhead
We compared the time overhead of our method and the two com-

etitive baselines, TeRo (Xu et al., 2020) and ATiSE (Xu et al., 2019)
n the three datasets. The metrics include the training time per epoch,
he number of epochs required for the model to converge, and the total
raining time. The results are listed in Table 4.

Experimental results indicate that our method converges faster,
lthough the training time for each epoch is longer. When the epoch
s small, the results on the validation sets are stable and the results
n the test sets are better than the two baselines. On ICEWS14 and
CEWS05-15, the total training time of BTDG is obviously shorter than
hat of TeRo and ATISE.

emory costing
Similarly, we compared the space complexity as well as the memory

osting of our method and TeRo and ATiSE on the three datasets. The
esults are listed in Table 5.

Our method requires more memory on ICEWS14 and ICEWS05-15,
nd requires less on Wikidata12k. We need to explain although the

pace complexity of our method is 𝑂(𝑛𝛥𝑡 ∗ 𝑑𝑒 ∗ 𝑑𝑟 ∗ 𝑑𝑒), the parameters
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Table 5
Statistics of memory costing. (IC14, IC15 and Wiki are shorthand for ICEWS14, ICEWS05-15 and Wikidata12k).

BTDG TeRo ATiSE

IC14 IC15 Wiki IC14 IC15 Wiki IC14 IC15 Wiki

Space complexity 𝑂(𝑛𝛥𝑡 ∗ 𝑑𝑒 ∗ 𝑑𝑟 ∗ 𝑑𝑒) 𝑂(𝑛𝑒 ∗ 𝑑 + 𝑛𝑟 ∗ 𝑑 + 𝑛𝑟 ∗ 𝑑) 𝑂(𝑛𝑒 ∗ 𝑑 + 𝑛𝑟 ∗ 𝑑)

𝑑𝑒(= 𝑑𝑡𝑖𝑚𝑒) 200 100 30 500 500 500 500 500 500
𝑑𝑟 50 50 20 500 500 500 500 500 500

Memory cost (MB) 2217 2115 1621 1451 1695 1719 1773 1987 2067
Table 6
Experiments of BTDG with different parameters.

𝑑𝑒 𝑑𝑟 Hits@1 Hits@3 Hits@10 MRR Memory cost (M) Training time (s)

BTDG

200 50 0.516 0.656 0.753 0.601 – –
100 50 0.506 0.643 0.741 0.590 – –
80 50 0.494 0.636 0.739 0.581 – –
50 20 0.457 0.609 0.735 0.554 1439 10 230

TeRo 500 500 0.468 0.621 0.732 0.562 1451 21 700
ATiSE 500 500 0.436 0.629 0.75 0.55 1773 34 750
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𝑑𝑒(= 𝑑𝑡𝑖𝑚𝑒) and 𝑑𝑟 on the three datasets are set to 200/100/30 and
0/50/20, while TeRo and ATiSE both set these parameters to 500.
ote that the number of entities of three datasets is all around 10000.
herefore, our method uses fewer parameters for entity and relation
mbeddings, and has additional core tensor parameters.

xperiments with equal parameters
To further explore the performance of our model, we compare BTDG

o the other models (ATiSE and TeRo) on ICEWS14 while the number
f parameters is kept to be equal. We conduct experiments by phasing
own 𝑑𝑒 and 𝑑𝑟, and report the experimental results as well as the
emory costing and the training time in Table 6.

From the experimental results, we find that in the same level of
arameter size, BTDG still obtains a competitive result in less training
ime.

. Conclusion

In this paper, we innovatively propose to model the facts from two
ifferent time scales and to overcome the shortcomings of the existing
KG embedding methods in dealing with different types of facts. We
ropose in this paper that the block term decomposition is adopted
o design the scores of facts, which has the following advantages.
irst, modeling the facts from two different time scales overcomes the
hortcomings of the existing TKG embedding methods in dealing with
ifferent types of facts. Second, the proposed method also provides
unified framework for discrete facts and continuous facts. Last, the

roposed model can converge quickly and achieve satisfactory results
ithout setting too large entity and relation dimensions.

However, there still exist some deficiencies in the proposed model.
he model treats each coarse-grained time slice in the time period
qually for simplicity’s sake, while their contributions to the fact infer-
nce may vary. This problem might be solved by reweighting the time
lice, and how to obtain the appropriate weight needs to be carefully
esigned. In future work, the concept of distinct time granularities can
lso be extended to existing TKG methods based on other semantic
atching models or translational distance models.
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