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ABSTRACT
Graph Neural Networks (GNNs) have exhibited their powerful

ability of tackling nontrivial problems on graphs. However, as an

extension of deep learning models to graphs, GNNs are vulnerable

to noise or adversarial attacks due to the underlying perturbations

propagating in message passing scheme, which can affect the ulti-

mate performances dramatically. Thus, it’s vital to study a robust

GNN framework to defend against various perturbations. In this

paper, we propose a Robust Tensor Graph Convolutional Network

(RT-GCN) model to improve the robustness. On the one hand, we

utilize multi-view augmentation to reduce the augmentation vari-

ance and organize them as a third-order tensor, followed by the

truncated T-SVD to capture the low-rankness of the multi-view

augmented graph, which improves the robustness from the per-

spective of graph preprocessing. On the other hand, to effectively

capture the inter-view and intra-view information on the multi-

view augmented graph, we propose tensor GCN (TGCN) framework

and analyze the mathematical relationship between TGCN and

vanilla GCN, which improves the robustness from the perspective

of model architecture. Extensive experimental results have verified

the effectiveness of RT-GCN on various datasets, demonstrating

the superiority to the state-of-the-art models on diverse adversarial

attacks for graphs.
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1 INTRODUCTION
Graphs are ubiquitous in a wide variety of real-world scenarios,

ranging from social graphs [19, 34] to citation graphs [6, 26], biolog-

ical graphs [17, 30], e-commerce graphs [21, 33], etc. Analyzing and

mining valuable information from underlying graph data has been

actively researched both in academia and industry. Among vari-

ous graph mining techniques, graph neural networks (GNNs) [28],

which explore neural networks for graphs, have attracted consid-

erable attentions in recent years. State-of-the-art GNNs [9, 16, 32]

follow themessage-passing scheme, where node representations are

generated by aggregating information from neighbors iteratively.

Due to the striking performances, GNNs have become powerful

tools in graph analysis and are widely applied to various down-

stream tasks such as node classification [25, 41].

However, recent researches have shown that GNNs are vulnera-

ble to noise and adversarial attacks [4, 5, 45], i.e., subtle perturba-

tions on node attributes and graph structures. Specifically, owing to

the iterative message-passing scheme of GNNs, small perturbations

in the graph are propagated to neighborhoods and further affect

node representations in a wider range, which drastically degrade

models’ performance on downstream tasks. The lack of robustness

of traditional GNNs has become a critical issue in applications of

many real-world scenarios. Consider an e-commerce graph as an

example, where nodes represent users and edges represent transac-

tions. Fraudulent users created by a hacker constitute fake transac-

tions to real users, which can easily propagate harmful information

in the whole graph and mislead GNN models into estimating user

creditability inaccurately. Therefore, it is of crucial importance to

design GNN models that are robust against adversarial attacks.

A common solution for improving the robustness of GNNmodels

is to generate denoised graphs by graph augmentation [27], such as

adding/dropping edges, changing edge weights, etc. By employing

graph augmentations, some spurious structures/attributes might

be eliminated while the potential ones might be discovered and

exploited, thus facilitating defending against adversarial attacks.
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Figure 1: Case study and illustrations of differences between
single-view and multi-view augmentation. Red solid lines
represent the added edges and red dashed lines represent
the dropped edges. The histogram depicts the variance of ac-
curacy on node classification by utilizing single-view/multi-
view augmentation respectively.

For example, Entezari et al. [7] utilize singular value decompo-

sition (SVD) to vaccinate GNN model. Wu et al. [36] recompute

the edge weights between nodes by using Jaccard similarity or

cosine similarity. The aforementioned methods focus on single-

view augmentation, i.e., they generate only one augmented graph.

However, we argue that single-view augmentation introduces high

augmentation variance for learning node representations, which

can be reduced by multi-view augmentation, i.e., generating multi-

ple augmented graphs simultaneously. Fig. 1 illustrates an example

of single-view and multi-view augmentation with adding and drop-

ping edges, where red solid lines represent the added edges and

red dashed lines represent the dropped edges. Empirically, single-

view augmentation adds/drops edges in only one graph, which has

large randomness and thus introduces high augmentation variance.

On the contrary, multi-view augmentation simultaneously gener-

ates multiple graphs with different added/dropped edges, which is

equivalent to the regularization of augmented graphs, thus having

lower variance and stronger robustness. To verify our hypothesis,

we further conduct a case study on three datasets. Concretely, we

feed graphs generated by single-view and multi-view augmentation

into GCN respectively, and perform node classification with the

learned node embeddings, where accuracy is employed to measure

the performance. Note that each graph generated by multi-view

augmentation is trained through an independent GCN, and the

ultimate accuracy is the average prediction of all GCNs. We repeat

each experiment 10 times and the variance of accuracy is shown in

the histogram of Fig. 1. Obviously, the variance of performances

on multi-view augmentation is much lower than single-view aug-

mentation. Hence, it is essential to utilize multi-view augmentation

to reduce the augmentation variance, which helps improve the

robustness of graph augmentation.

Besides, as most individuals in real-world graphs are tend to be

connected with a small number of neighbors, forming some united

communities, low-rankness remains a universal property of the

graph’s topological structure [12, 42]. And note that current suc-

cessful adversarial attacks for graphs mainly increase the number

of neighbors dissimilar to the target nodes, which correspond to the

high-rank component of graph data [7]. Thus, the low-rank approx-

imation is a simple but effective method to eliminate perturbations.

As shown in Fig. 2, the distribution of nodes in Cora dataset [24]

(a) Without LRA (b) With LRA

Figure 2: The visual results of Cora dataset using t-SNE [31]
with/without low rank approximation (LRA) undermetattack
with 25% perturbation rate.

under metattack [46] with 25% perturbation rate, approximated by

low rank has a more clear community relationship than the other

one. As a consequence, how to employ multi-view augmentation to

reduce the augmentation variance as well as maintain the low-rank

property plays a significant role in defending against adversarial

attacks, which improves the robustness from the perspective of

graph preprocessing.

With multi-view augmented graphs as input, modern GNNs,

e.g., the most representative Graph Convolutional Network (GCN)

[16], can only process multiple augmented graphs one after another

separately and aggregates the multi-view embeddings at last, which

neglects the correlation among different views in graph convolution

operator. Augmented from the same original graph, the graphs of

different views are supposed to have similar low-rank components,

i.e., they are low-rank across the view dimensions. Thus, it’s vital

to capture the low-rank inter-view information to improve the

robustness from the perspective of model architecture.

In order to address the aforementioned problems, we propose

Robust Tensor Graph Convolutional Networks (RT-GCN) in this

paper. Concretely, we firstly acquire multi-view augmented graphs

by utilizing random edge-adding/dropping technique, and utilize

Tensor Singular Value Decomposition (T-SVD) to approximate the

augmented graphs with low-rankness to improve their robustness.

Then, tensor GCN (TGCN) is proposed to convolute the multi-view

graph in inter-view and intra-view simultaneously to learn a more

robust representation.

The contributions of this paper are summarized as follows:

• We propose a T-SVD based graph augmentation method,

which obtains a low tubal rank approximation of a multi-

view graph augmented by random edge dropping/adding

technique.

• To learn the inter-view and intra-view information of aug-

mentedmulti-view graph simultaneously, we propose a TGCN

model and analyze the relationship between TGCN and

vanilla GCN.

• Extensive experimental results on various datasets demon-

strate the effectiveness of the proposed model and the supe-

riority to the state-of-the-art methods on different kinds of

adversarial attacks for graphs.

The rest of this paper is organized as follows. In Section 2, we

introduce some relevant works. In Section 3, we introduce the

notations and some preliminaries used in this paper. We depict our
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framework elaborately in Section 4 and show our experimental

results in Section 5. Finally, we conclude this paper in Section 6.

2 RELATEDWORK
2.1 Graph Neural Networks
With the rapid development of deep learning, graph neural net-

works (GNNs) have gained growing interests in recent years, which

extend neural networks for graph-structured data. Owing to the

striking performance, GNNs have a wide variety of applications

in real-world scenarios. Representative methods of GNNs include

GCN [16], which designs a layer-wise propagation rule based on a

first-order approximation of spectral graph convolutions. Simple

Graph Convolution (SGC) [35] reduces the GCN layer to a single

linear transformation and still achieves competitive performance.

GraphSAGE [9] samples and aggregates features from neighbors

to generate node representations. Graph Attention Network (GAT)

[32] employs a self-attention mechanism to measure contributions

of different neighbors when aggregating information. Nevertheless,

traditional GNNs learn representations by aggregating neighbors’

information iteratively, which are vulnerable to adversarial attacks

and lack in robustness.

2.2 GNNs for Defending Adversarial attacks
To address the fragility problem of GNNs, many researches are pro-

posed recently and achieve incredible performance. GCN-Jaccard

[45] and GCN-SVD [7] utilize corresponding graph augmentation

methods with prior knowledge, e.g., Jaccard similarity, cosine sim-

ilarity, low-rankness, etc., to obtain a considerably clean graph

from the poisoned one. GNNGUARD [37] estimates the neighbor

importance and introduces a layer-wise memory mechanism in the

training procedure to reduce the weights of suspicious edges. RGCN

[44] adopts Gaussian distribution as hidden node representations in

the convolutional layer to absorb the changes of adversarial attacks

in the variance of Gaussian distribution automatically. ProGNN

[12] defends adversarial attacks by imposing low-rankness, sparsity

and feature smoothness regularizations on the objective function

to constraint the target graph. Though tremendous achievements

have been made by the above methods, they hardly consider re-

ducing the augmentation variance or contingency introduced by

adversarial attacks.

2.3 Low-rankness in Data Mining
Low-rankness is a universal property of most matrices, which is

able to depict the correlations among rows or columns. Besides,

low-rankness is widely applied in many data mining tasks, e.g.,

matrix completion [11], robust principal component analysis [2],

etc. However, the low-rankness of matrix can hardly capture the

information across higher dimensions when the data is beyond 2-D.

A tensor is often known as an extension of a 1-D array or 2-D

matrix, which can offer a high-dimensional storage structure for

various data. Thus, it’s a powerful tool to process and analyze the

multi-dimensional data [3, 20, 39]. Kilmer et al. [14] proposed a

novel tensor-tensor product (t-product) instead of traditional mode-

𝑛 matrix multiplication. And based on this, the tensor singular

value decomposition (T-SVD) is further proposed to study the low-

rankness of tensor data globally. Recently, T-SVD is widely used in

multi-dimensional data mining and has achieved incredible perfor-

mance, e.g., robust tensor completion problem [29, 38, 43], tensor

robust principal component analysis [22], etc.

Some recent works have introduced the tensor algebraic opera-

tions into the GNN schemes to process the dynamic graphs [23] or

multi-relational graph [10]. However, since the tensor-based oper-

ators remain unexplored, the relationship between the proposed

tensor-based GCN and vanilla GCN [16] remains unclear.

3 NOTATIONS AND PRELIMINARIES
3.1 Notations
In this paper, a graph is defined as𝐺 = (𝑉 , 𝐸), where𝑉 = {𝑣1, . . . , 𝑣𝑁 }
is the set of 𝑁 nodes and 𝐸 ⊂ 𝑉 ×𝑉 denotes the set of edges be-

tween nodes. Let 𝐴 ∈ R𝑁×𝑁
denotes the adjacency matrix and

𝐷𝑖,𝑖 =
∑
𝑗 𝐴𝑖, 𝑗 represents the diagonal degree matrix, where 𝐴𝑖, 𝑗

indicates that node 𝑖 and node 𝑗 are neighbours if 𝐴𝑖, 𝑗 = 1 else

𝐴𝑖, 𝑗 = 0. We denote the node feature matrix as 𝑋 ∈ R𝑁×𝐹
, where

𝐹 is the dimension of the node features. Alternatively, the graph

can be also represented as 𝐺 = (𝐴,𝑋 ).
Tensors are symbolized by Euler letters, e.g., let G ∈ R𝑁×𝑁×𝑇

is

a third-order tensor, which denotes a 𝑇 -view graph. Each frontal

slice G(:, :, 𝑖) ∈ R𝑁×𝑁
of G represents the 𝑖-th-view graph, which

can be denoted as 𝐺 (𝑖)
for simplicity.

3.2 Graph Neural Networks
GNNs have received great attentions in recent years due to their

characteristics of solving nontrivial problems on graph data. How-

ever, in this paper, we focus on the most popular and effective GNN

model proposed by Kipf et al. [16], GCN, for semi-supervised node

classifications. Besides, we extend the matrix-based propagation

framework to tensor-based one in this paper. Specifically, GCN in

[16] is of two GCN layers, whose propagation function 𝑓𝜃 can be

formulated as:

𝑓𝜃 (𝐴,𝑋 ) = softmax(𝐴𝜎 (𝐴𝑋𝑊1)𝑊2), (1)

where 𝐴 = �̂�− 1

2 (𝐴 + 𝐼 )�̂�− 1

2 represents the symmetric normalized

𝐴+ 𝐼 with added self-loops, �̂�𝑖𝑖 = 1+∑𝑗 𝐴𝑖 𝑗 is the diagonal element

of degree matrix �̂� correspondingly, and 𝜎 (·) denotes a nonlinear
activation, e.g., 𝑅𝑒𝐿𝑈 (·). 𝜃 is the parameters set including𝑊1 and

𝑊2.

3.3 T-product
For tensorA ∈ R𝑛1×𝑛2×𝑛3

, we define two operators unfold and fold
as:

unfold(A) =


𝐴(1)

𝐴(2)

.

.

.

𝐴(𝑛3)


, fold(unfold(A)) = A,

where the unfold operator flattens tensor A to a matrix of size

𝑛1𝑛3 × 𝑛2 and fold is its inverse operator. Also, we define the block

circulant matrix bcirc(A) ∈ R𝑛1𝑛3×𝑛2𝑛3
of tensor A as:

bcirc(A) =


𝐴(1) 𝐴(𝑛3) · · · 𝐴(2)

𝐴(2) 𝐴(1) · · · 𝐴(3)

.

.

.
.
.
.

.

.

.
.
.
.

𝐴(𝑛3) 𝐴(𝑛3−1) · · · 𝐴(1)


.
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Figure 3: The framework of RT-GCN, including T-SVD based graph augmentation and tensor GCN.

Figure 4: Illustration of T-SVD.

Given another tensor B ∈ R𝑛2×𝑛4×𝑛3
, then the t-product A ∗ B is

defined as [14]:

C = A ∗ B = fold(bcirc(A) · unfold(B)) (2)

where C ∈ R𝑛1×𝑛4×𝑛3
. From the matrix multiplication perspective,

the third-order tensorA can be regarded as a matrix of size 𝑛1 ×𝑛2

with each element being a tube that lies in the third dimension,

where a tube of tensor is defined as a vector of size 1 × 1 × 𝑛3.

Note that t-product can be implemented by Discrete Fourier Trans-

form for saving computational resource [14], which is depicted in

Appendix A due to the page limitation.

3.4 Tensor Singular Value Decomposition
Matrix SVD is one of the most popular matrix decomposition meth-

ods, which can be mathematically formulated as:

𝐴 = 𝑈 Σ𝑉𝑇 , (3)

where 𝐴 ∈ R𝑛1×𝑛2
is the underlying matrix, 𝑈 ∈ R𝑛1×𝑛1

and 𝑉 ∈
R𝑛2×𝑛2

are orthogonal matrices consisting of singular vectors, and

(·)𝑇 denotes transpose. Σ is a diagonal matrix whose diagonal

elements are sorted in descending order.

Analogous to the matrix SVD, T-SVD [13, 14] is proposed based

on the aforementioned t-product. Given A ∈ R𝑛1×𝑛2×𝑛3
, and it can

be decomposed as:

A = U ∗ S ∗ V𝐻 , (4)

where U ∈ R𝑛1×𝑛1×𝑛3
, V ∈ R𝑛2×𝑛2×𝑛3

are orthogonal tensors

[14], i.e., U ∗ U𝐻 = I and V ∗ V𝐻 = I. Each frontal slice of

S ∈ R𝑛1×𝑛2×𝑛3
is diagonal and (·)𝐻 means conjugate transpose.

Fig. 4 shows the decomposition process of T-SVD intuitively. Note

that when 𝑛3 = 1, T-SVD can degenerate to matrix SVD.

Definition 1 (Tensor Tubal Rank). [13] For a tensor A ∈
R𝑛1×𝑛2×𝑛3 , it’s tubal rank is defined as the number of nonzero singular
tubes of S, whereA = U∗S∗V𝐻 . Normally, 𝑟 < min(𝑛1, 𝑛2) when
low tubal rank-r approximation are conducted. For 𝑗 > 𝑟 , the element
of 𝑆 (𝑖)

𝑗 𝑗
will be zero.

4 PROPOSED FRAMEWORK
In this section, we will introduce our proposed RT-GCN model

through two perspectives of robustness on graph preprocessing

and model architecture, respectively.

4.1 T-SVD Based Graph Augmentation
4.1.1 Graph Augmentation. Data augmentation is an effective ap-

proach to artificially enlarge the diversity of dataset by using var-

ious translations without modifying the model architecture but

improving the generalization of the whole model. Random erasing

[40] has acquired magnificent achievements in image classification

by randomly erasing pixels within the images. Albeit simple, it

outperforms many convolutional neural networks (CNN) based

benchmarks. Considering the underlying relation between CNNs

and GNNs, we utilize random edge dropping/adding technology

analogously in our model.

Given a target graph 𝐺 = (𝐴,𝑋 ), random edge dropping/adding

is conducted in preprocessing stage. Each edge in the graph is

dropped or added with a certain probability 𝑝 to obtain the aug-

mented graph. In order to reduce the augmentation variance, we

utilize multi-view augmentation to produce𝑇 −1 augmented graphs.

The original target graph and 𝑇 − 1 augmented graphs can be con-

structed to a third-order tensor G = (A,X) of size 𝑁 × 𝑁 × 𝑇
by folding them in the third order, where A ∈ R𝑁×𝑁×𝑇

repre-

sents an adjacency tensor and each frontal slice 𝐴(𝑖) (𝑖 ∈ [1,𝑇 ])
of it is the corresponding single-view adjacency matrix. Similarly,

X ∈ R𝑁×𝐹×𝑇
represents 𝑇 -view node feature tensor.
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4.1.2 Low Tubal Rank Tensor Approximation. It is vital to denoise

before graphs are input to the downstream models as slight pertur-

bations can reduce the performance dramatically. Noises or adver-

sarial attacks for graphs usually impose unnoticeable perturbations

on nodes or edges, which is tend to correspond to the high-rank

component of the graph [7]. And it has been verified that real-world

graphs are naturally low-rank [12, 42] because wherein nodes are

often gathered in cluster way according to a common topic or

belonging to the same community.

Hence, to discard high-rank noises or perturbations in graphs,

low-rank approximation has been verified as an effective way to

improve robustness in [7, 12]. Truncated SVD of matrices is a promi-

nent approach applied in dimension reduction to extract the low-

rank component of matrix data. Usually, computing the rank-𝑟

approximation of matrix 𝐴 can be formulated as:

𝐴𝑟 = 𝑈𝑟Σ𝑟𝑉
𝑇
𝑟 =

𝑟∑︁
𝑖=1

𝑢𝑖𝜎𝑖𝑣
𝑇
𝑖 , (5)

where 𝑟 is rank of matrix 𝐴𝑟 derived from SVD, 𝑈𝑟 and 𝑉𝑟 denotes

the top 𝑟 singular vectors of matrix 𝑈 and 𝑉 , respectively. Σ𝑟 is
the diagonal matrix who only contains top 𝑟 elements of singular

values.

Nevertheless, when the structure of data gets beyond 2-D, tradi-

tional SVD can hardly consider the low-rankness along different

dimensions. For augmented multi-view graphs, the low-rankness

of not only the frontal slices but also the lateral slices can be stud-

ied. Thus, to capture the inter-view consistency and intra-view

neighbor information simultaneously, T-SVD is served as the most

promising method according to the entangling ability of t-product.

Let A ∈ R𝑁×𝑁×𝑇
represent the augmented adjacency tensor and

it can be low tubal rank approximated as:

A𝑟 = U𝑟 ∗ S𝑟 ∗ V𝐻
𝑟 , (6)

where 𝑟 is the tubal rank of tensor A𝑟 .U𝑟 , S𝑟 andV𝑟 are similar

to matrix ones by regarding each tensor tube as an element in the

first frontal slice.

4.2 T-product Based Tensor GCN
Inspired by the most popular spatial GCN [16] on single-view graph

for its effectiveness and heuristics, this paper extends the dimen-

sion of model to third order, called tensor GCN (TGCN). Existing

GCN models can only process the multi-view graph one view after

another separately and fuse the inter-view information at the final

step, which ignores the correlation among different views in graph

convolution operator. As a result, it’s inevitable to miss a number

of key features during the propagation stage due to the activation

function, which decreases the robustness of model.

Let A ∈ R𝑁×𝑁×𝑇
denotes the adjacency tensor of a T-view

graph with each frontal slice 𝐴(𝑖) = A(:, :, 𝑖) representing a single-

view graph. Correspondingly,
ˆD ∈ R𝑁×𝑁×𝑇

is the diagonal degree

tensor with each frontal slice �̂� (𝑖)
representing the diagonal degree

matrix of 𝐴(𝑖) = 𝐴(𝑖) + 𝐼 . Also, X ∈ R𝑁×𝐹×𝑇
is the feature tensor

with each frontal slice 𝑋 (𝑖)
representing the 𝑖-th afeature matrix of

𝑖-th-view graph. Hence, we reformulate the aforementioned two-

layer GCNs’ propagation function Eq. (1) in the tensor way as:

𝑓𝜃 (A,X) = softmax(( ˆA ∗ 𝜎 ( ˆA ∗ X ∗W1) ∗W2) ×3𝑊3), (7)

where * denotes the t-product,
ˆA = fold(�̂� (𝑖)−

1

2 (A+I) (𝑖) �̂� (𝑖)−
1

2 ),
×3 denotes matrix multiplication along the third dimension and 𝜃 is

the set of parameters including weightsW1,W2 and𝑊3. Different

from tensor weights W1 ∈ R𝐹×𝐻×𝑇
and W2 ∈ R𝐻×𝐾×𝑇

, where 𝐻

is the dimension of embeddings of hidden layer and 𝐾 is the output

size, matrix weight𝑊3 is used to aggregate the final embeddings,

which a vector of size 𝑇 × 1 indeed.

4.3 Analysis of Relationship Between Vanilla
GCN and Tensor GCN

It’s well-known that message passing framework is GNNs’ pillar.

Kipf et al. [16] proposed a fast approximate convolution on graphs

in the spatial domain (for sake of distinction, we named it vanilla

GCN in this paper), which is a linear formulation indeed. Especially,

t-product is t-linear combination of tensors from the tube-wise

perspective [13], which inspires us to study not only TGCN but

also the possible mathematical relationships between vanilla GCN

and TGCN.

Considering the fact that t-product can be computed by linear

DFT according to Appendix A, it’s intuitive that the embedding of

TGCN is not a linear combination of embeddings of vanilla GCNs.

In other words, the result of t-product is not simply the linear

combination of the products of matrix multiplications between each

corresponding frontal slices in the spatial domain. To prove this, we

take the above notations as an example and the node embedding in

final layer of vanilla GCN is:

𝐻
(𝑖)
2

= 𝐴(𝑖)𝜎 (𝐴(𝑖)𝑋 (𝑖)𝑊 (𝑖)
1

)𝑊 (𝑖)
2
, (8)

where 𝑖 denotes the 𝑖-th graph, i.e., the number of GCNs needed is

𝑇 . Similarly, the node embedding in final layer of TGCN is:

H2 = ˆA ∗ 𝜎 ( ˆA ∗ X ∗W1) ∗W2 . (9)

On account of the performance of nonlinear activation function

𝜎 (·), i.e.,𝑅𝑒𝐿𝑢 (·), it’s apparent that the embeddings in the final layer

are not linear correlation. However, when the activation function is

linear or there are no activation functions in GCN and TGCN, the

embedding obtained by TGCN is still not a linear combination of

ones obtained by 𝑇 vanilla GCNs indeed. To verify our proposition,

we just consider the embeddings in the first layer without activation

function, without losing generality. Supposing there exists a linear

transform matrix 𝑄 of size 𝑇 × 𝑇 , which satisfies the following

equation:

H1 = ˆA ∗ X ∗W1 = fold(𝐴(𝑖)𝑋 (𝑖)𝑊 (𝑖)
1

) ×3 𝑄. (10)

Specifically, by ignoring weights momentarily, the element-wise

tensor graph convolution operator in spatial domain can be per-

formed as:

unfold(C) = unfold(A ∗ X) = bcirc(A) · unfold(X)

=


𝐴(1) 𝐴(𝑇 ) · · · 𝐴(2)

𝐴(2) 𝐴(1) · · · 𝐴(3)

.

.

.
.
.
.

.

.

.
.
.
.

𝐴(𝑇 ) 𝐴(𝑇−1) · · · 𝐴(1)


·


𝑋 (1)

𝑋 (2)

.

.

.

𝑋 (𝑇 )


(11)
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=



𝐴
(1)
1,:
𝑋

(1)
:,1

+ · · · +𝐴(2)
1,:
𝑋

(𝑇 )
:,1

, · · · , 𝐴(1)
1,:
𝑋

(1)
:,𝐹

+ · · · +𝐴(2)
1,:
𝑋

(𝑇 )
:,𝐹

𝐴
(1)
2,:
𝑋

(1)
:,1

+ · · · +𝐴(2)
2,:
𝑋

(𝑇 )
:,1

, · · · , 𝐴(1)
2,:
𝑋

(1)
:,𝐹

+ · · · +𝐴(2)
2,:
𝑋

(𝑇 )
:,𝐹

.

.

.

𝐴
(𝑇 )
𝑁,:
𝑋

(1)
:,1

+ · · · +𝐴(1)
𝑇,:
𝑋

(𝑇 )
:,1

, · · · , 𝐴(𝑇 )
𝑁,:
𝑋

(1)
:,𝐹

+ · · · +𝐴(1)
𝑁,:
𝑋

(𝑇 )
:,𝐹


,

where C and𝐶 (𝑖)
s denote the results of TGCN. According to Eq. (11),

note that the element of𝐶 (𝑖)
, e.g.,𝐶

(1)
𝑚,𝑛 = 𝐴

(1)
𝑚,:𝑋

(1)
:,𝑛 +𝐴(𝑇 )

𝑚,: 𝑋
(2)
:,𝑛 +· · ·+

𝐴
(2)
𝑚,:𝑋

(𝑇 )
:,𝑛 , is entangled by all the frontal slice of A and X. What’s

more,𝐶
(2)
𝑚,𝑛 = 𝐴

(2)
𝑚,:𝑋

(1)
:,𝑛 +𝐴(1)

𝑚,:𝑋
(2)
:,𝑛 + · · · +𝐴(3)

𝑚,:𝑋
(𝑇 )
:,𝑛 is another com-

bination between𝐴(𝑖)
s and𝑋 (𝑖)

s. In a word, all these𝐶 (𝑖)
s follow a

circulant formulation so as to fuse inter-view information roundly.

The vector 𝐶
(𝑖)
𝑚,: = [𝐴(𝑖)

𝑚,:𝑋
(1)
:,1

+ · · · + 𝐴(𝑖+1)
𝑚,: 𝑋

(𝑇 )
:,1

, · · · , 𝐴(𝑖)
𝑚,:𝑋

(1)
:,𝐹

+
· · · +𝐴(𝑖+1)

𝑚,: 𝑋
(𝑇 )
:,𝐹

] is able to regarded as the underlying embedding

of node𝑚 in 𝑖-th view.

However, vanilla spatial graph convolution performs as matrix

multiplication on a single-view graph as:

𝐶 (𝑖) = 𝐴(𝑖)𝑋 (𝑖) , (12)

where 𝐶 (𝑖)
s denote the results of vanilla GCNs. Then the element-

wise formulation is 𝐶
(𝑖)
𝑚,𝑛 = 𝐴

(𝑖)
𝑚,:𝑋

(𝑖)
:,𝑛 , which only consists of the

corresponding row and column information of 𝐴 and 𝑋 in 𝑖-th

view, respectively. And the embedding of node𝑚 in 𝑖-th view is

𝐶
(𝑖)
𝑚,: = [𝐴(𝑖)

𝑚,:𝑋
(𝑖)
:,1
, · · · , 𝐴(𝑖)

𝑚,:𝑋
(𝑖)
:,𝐹

]. Transform fold(𝐶 (𝑖) ) to result

tensor
ˆC by multiplying 𝑄 along the third dimension:

ˆC = fold(𝐶 (𝑖) ) ×3𝑄 =



𝐶
(1)
:,1
, · · · ,𝐶 (𝑇 )

:,1

𝐶
(1)
:,2
, · · · ,𝐶 (𝑇 )

:,2
.
.
.

𝐶
(1)
:,𝐹
, · · · ,𝐶 (𝑇 )

:,𝐹


×


𝑄1,1, · · · , 𝑄1,𝑇

𝑄2,1, · · · , 𝑄2,𝑇

· · ·
𝑄𝑇,1, · · · , 𝑄𝑇,𝑇

 , (13)
where the embedding of node𝑚 in 𝑖-th view can be computed by:

𝐶
(𝑖)
𝑚,: =

©­­­­­­«



𝐶
(1)
𝑚,1

, · · · ,𝐶 (𝑇 )
𝑚,1

𝐶
(1)
𝑚,2

, · · · ,𝐶 (𝑇 )
𝑚,2

.

.

.

𝐶
(1)
𝑚,𝐹

, · · · ,𝐶 (𝑇 )
𝑚,𝐹


×


𝑄1,𝑖

𝑄2,𝑖

.

.

.

𝑄𝑇,𝑖


ª®®®®®®¬

𝑇

=



𝐴
(1)
𝑚,:𝑋

(1)
:,1

×𝑄1,𝑖 +𝐴(2)
𝑚,:𝑋

(2)
:,1

×𝑄2,𝑖 + · · · +𝐴(𝑇 )
𝑚,: 𝑋

(𝑇 )
:,1

×𝑄𝑇,𝑖
𝐴
(1)
𝑚,:𝑋

(1)
:,2

×𝑄1,𝑖 +𝐴(2)
𝑚,:𝑋

(2)
:,2

×𝑄2,𝑖 + · · · +𝐴(𝑇 )
𝑚,: 𝑋

(𝑇 )
:,2

×𝑄𝑇,𝑖
.
.
.

𝐴
(1)
𝑚,:𝑋

(1)
:,𝐹

×𝑄1,𝑖 +𝐴(2)
𝑚,:𝑋

(2)
:,𝐹

×𝑄2,𝑖 + · · · +𝐴(𝑇 )
𝑚,: 𝑋

(𝑇 )
:,𝐹

×𝑄𝑇,𝑖



𝑇

(14)

Comparing 𝐶
(𝑖)
𝑚,: with 𝐶

(𝑖)
𝑚,:, generally speaking, there doesn’t

exist a linear transform matrix 𝑄 to transform fold(𝐶 (𝑖) ) to C,
generically (meaning that the conclusion remains true except for

a set of measure zero with respect to the Lebesgue measure.) The

extreme situation remains when all the feature matrices𝑋 (𝑖)
are the

same, all the elements of𝑄 are equal to 1. In a word, the embedding

of TGCN is a linear combination of ones of vanilla GCNs, only when

the activation function is linear or there is no activation functions,

and all the feature matrices are the same.

Proposition 4.1. Let A ∈ R𝑁×𝑁×𝑇 be a 𝑇 -view graph and each
frontal slice𝐴(𝑖) ∈ R𝑁×𝑁 is the 𝑖-th-view graph. Then the embedding
obtained by TGCN is generically a nonlinear combination of ones
learned by an independent vanilla GCN from each view with respect
to the Lebesgue measure.

In addition, the vector 𝐶
(𝑖)
𝑚,: illustrates that TGCN is able to

capture the inter-view information against vanilla GCN. That is,

each frontal slice of H1, e.g., the aforementioned simple embed-

ding 𝐶
(𝑖)
𝑚,: = [𝐴(𝑖)

𝑚,:𝑋
(1)
:,1

+ · · · + 𝐴(𝑖+1)
𝑚,: 𝑋

(𝑇 )
:,1

, · · · , 𝐴(𝑖)
𝑚,:𝑋

(1)
:,𝐹

+ · · · +
𝐴
(𝑖+1)
𝑚,: 𝑋

(𝑇 )
:,𝐹

], collects information from all the other augmented

graphs and maintains the original intra-view neighbour aggregat-

ing mechanism, which demonstrates TGCN’s superiority. More-

over, inter-view information aggregating before activating is able

to consider more features of nodes than after activating, because

activation function filters some important features. Taking 𝑅𝑒𝐿𝑈 (·)
as an example, the latter formulation can only aggregate the non-

negative features from different views, while the former one is able

to consider the negative features.

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Datasets. Following [12, 45, 46], we validate the proposed

model on the largest connected component (LCC) of three bench-

mark datasets, including three citation graphs, i.e., Cora [24], Cora-

ML [1] and Citeseer [8]. The concrete statistics of datasets are

shown in Table 2.

5.1.2 Baselines. Following the adversarial attacks repository Deep-
Robust [18], we compare our RT-GCN model with the state-of-the-

art GNN and defense models on three datasets to evaluate the

robustness performance:

• GCN [16]: This is one of the most representative GCN mod-

els owing to its effectiveness, which leverages the spatial

graph convolution operator to generate embeddings.

• GAT [32]: GraphAttentionNetwork (GAT) aggregates neigh-

bours according to the coefficients calculated by multi-head

self-attention mechanism.

• GCN-SVD [7]: This method preprocesses the adjacency ma-

trix by discarding the high-rank component of underlying

graph through low-rank approximation and feeds the pre-

processed adjacency matrix as input of the GCN model.

• GCN-Jaccard [36]: This method preprocesses the adjacency

matrix by eliminating the underlying noise, i.e., edges con-

nected with dissimilar nodes, according to the Jaccard sim-

ilarity of node features. Then, the preprocessed adjacency

matrix is fed into the GCNmodel to generate ultimate embed-

dings. Thus, GCN-Jaccard is not suitable to datasets without

features such as Polblogs.

• RGCN [44]: RGCN adopts Gaussian distribution as hidden

node representations to absorb the changes of adversarial

attacks in the variance of Gaussian distribution and imposes

penalty on the nodes with high variance.

• ProGNN [12]: ProGNN explores the low-rankness, sparsity

and feature smoothness of target graphs. This is an end-to-

end method that learns graph structure and GNN parameters

simultaneously.
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Table 1: The results (Accuracy±Std) of node classification under non-targeted attack (metattack).

Dataset Pbt Rate(%) GCN GAT GCN-SVD GCN-Jaccard RGCN ProGNN RT-GCN

Cora

0 83.34±0.33 83.73±0.77 78.02±0.36 82.47±0.43 84.40±0.84 82.98±0.23 85.34±0.37
5 77.31±0.75 79.89±0.90 78.19±0.70 79.33±0.49 79.23±0.45 82.27±0.45 82.02±0.40
10 70.72±1.66 74.13±1.58 72.54±1.04 77.11±0.74 73.35±0.57 79.03±0.59 80.58±0.28
15 64.38±2.07 70.95±1.10 69.23±0.96 75.05±0.70 68.48±0.69 76.40±1.27 79.83±0.17
20 54.84±1.63 58.25±1.22 63.56±0.55 73.60±1.44 58.78±0.16 73.32±1.56 76.44±0.70
25 50.14±1.07 53.22±1.43 62.58±0.81 72.22±1.27 52.61±0.67 69.72±1.69 72.27±0.69

Cora-ML

0 85.85±0.30 85.65±0.32 83.62±0.06 84.74±0.22 86.52±0.30 85.38±0.14 86.83±0.08
5 79.96±0.34 81.59±0.32 82.10±0.13 80.12±0.36 81.55±0.27 83.57±0.13 85.23±0.21
10 64.45±0.42 76.27±0.67 81.69±0.39 75.45±0.43 74.65±0.53 81.20±0.51 84.06±0.64
15 54.18±0.82 58.68±1.72 57.99±1.37 57.42±0.46 54.39±0.48 78.29±0.19 79.04±0.60
20 45.04±0.74 42.02±1.53 48.64±0.30 46.80±0.53 46.53±0.53 74.86±0.55 73.10±0.77
25 48.80±0.91 47.06±2.21 48.34±2.10 48.53±1.28 49.95±0.46 76.15±0.15 72.59±1.05

Citeseer

0 71.87±0.83 73.17±1.08 69.44±0.38 72.33±0.68 71.69±0.58 73.28±0.69 75.04±0.21
5 70.40±1.03 72.96±0.68 67.72±1.24 69.38±1.40 71.06±1.88 72.93±0.57 74.87±0.24
10 67.03±1.06 70.60±0.64 68.83±0.71 69.10±1.02 67.64±0.43 72.51±0.75 75.53±0.17
15 63.94±1.27 68.45±1.55 64.44±0.92 66.09±0.91 63.66±1.12 72.03±1.11 74.88±0.20
20 62.03±1.79 60.16±1.06 58.73±0.83 59.96±0.58 56.05±0.68 70.02±2.28 72.61±0.46
25 56.04±2.29 61.66±2.23 56.94±1.31 60.05±1.21 57.99±0.73 68.95±2.78 74.43±0.45

Table 2: The statistics of the largest connected components
(LCC) of the three benchmark datasets respectively.

Name 𝑁𝐿𝐶𝐶 𝐸𝐿𝐶𝐶 Classes Features

Cora 2485 5069 7 1433

Cora-ML 2810 7981 7 2879

Citeseer 2110 3668 6 3707

5.1.3 Parameter Settings. For each target graph, we randomly split

all nodes into three parts, i.e., 10% nodes for training, 10% nodes

for validation and the remaining 80% nodes for testing. The final

performance is the average of 10 runs for each experiment. All the

parameters of baselines are tuned to get preferable performance in

most situations or the same as authors’ original implementations.

Adam optimizer [15] with learning rate as 0.01 is utilized to train RT-

GCN. We augment the target graph to five views in all experiments,

i.e., 𝑇 = 5.

5.2 Defense Performance
To evaluate the robustness of the proposed method, we utilize three

types of adversarial attacks to perturb original graph in this paper:

• Targeted Attack: Targeted attack focuses on specified tar-

geted nodes and attempts to fool GNNs through these target

nodes. In this paper, we use the state-of-the-art targeted

attack, nettack [45] , to generate targeted attack on three

datasets.

• Non-targeted Attack: On the contrary to targeted attack,

non-targeted attack aims to degenerate the overall perfor-

mance of model without any specified nodes. Similarly, we

use the state-of-the-art non-targeted attack, metattack [46].

• Random Attack: Random attack is conducted by adding

edges between nodes on the graph randomly [12].

All datasets are firstly attacked by the aforementioned three

types of attacks under different perturbation rates. Then, we eval-

uate the proposed method RT-GCN and other baselines on these

poisoned graphs.

5.2.1 Defense Against Non-targeted Adversarial Attack. Metattack
is chosen as the representative non-targeted adversarial attack

method in our experiments and we use the default parameter set-

tings in authors’ original implementation for comparison methods.

To measure the performances of node classification tasks, we uti-

lize classification accuracy as the evaluation criteria. Metattack has

several variants, while we just consider the most destructive one,

Meta-Self. In the experiments, the perturbation rates vary from 0 to

25%with a step of 5%. The results of all the models, i.e., classification

accuracy with standard deviation, are shown in Table 1.

Note that RT-GCN outperforms the other models under different

perturbation rates from 0 to 25% in almost all situations, which ver-

ifies the effectiveness of proposed model on resisting non-targeted

adversarial attacks. Especially, the standard deviations of RT-GCN

consistently stay at a considerably low level compared with other

models. This demonstrates the superior robustness and stability of

ourmodel. Concretely, the performance of RT-GCN outperforms the

state-of-the-art model, i.e., ProGNN, on different datasets. Although

ProGNN explores the poisoned graph from low-rankness, sparsity

and feature smoothness, it only focus on single-view augmentation

to learn the original structure, which might introduce augmenta-

tion variance and contingency for learning node representations.

Moreover, compared with preprocessing models GCN-Jaccard and

GCN-SVD, T-SVD based graph augmentation has exhibited its su-

periority on multi-view augmentation. Compared to vanilla GCN,

our model improves the performance on three datasets under 25%

perturbation rate by 22%, 24% and 18%, respectively.

5.2.2 Defense Against Targeted Adversarial Attack. Nettack is adopted
as the targeted adversarial attack in this experiment and all the
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(a) Nettack-Cora (b) Nettack-Cora-ML (c) Nettack-Citeseer

Figure 5: The performance of RT-GCN and the other baselines under targeted attacks.

(a) Random-Cora (b) Random-Cora-ML (c) Random-Citeseer

Figure 6: The performance of RT-GCN and the other baselines under random attacks.

parameter settings are default similarly. The number of perturba-

tions on each targeted node varies from 0 to 5 with a step size of

1. GCN-SVD [7] has demonstrated that SVD based methods are

designed for defending carefully-crafted high-rank adversarial at-

tacks, i.e., nettack. As an extension, T-SVD based method illustrates

that low-rank approximation is able to defend high-rank attacks

again. As shown in Fig. 5, it’s intuitive that RT-GCN particularly

outperforms other methods when the perturbation rate is high.

5.2.3 Defense Against Random Adversarial Attack. In this experi-

ment, we evaluate the robustness of RT-GCN on defending random

attacks with perturbation rates varying from 0 to 100% with a step

of 20%. On the contrary to nettack, it’s obvious that random attack

is not an unnoticeable attack because it doesn’t consider any prop-

erties of graph. Thus, SVD based method GCN-SVD achieves the

poorest performance under random attacks. However, as shown in

Fig. 6, this disadvantage is greatly reduced by our RT-GCN model.

Besides, the performance of RT-GCN is considerably competitive

to ProGNN.

5.3 Ablation Study
To be aware of the framework of RT-GCN more clearly and figure

out which component of RT-GCN playing the key role on maintain-

ing robustness, we conduct the following ablation studies. Here,

we only show the results on three datasets under nettack because

of the page limitation.

5.3.1 Remove Random Adding/Dropping. It’s important to break

the shackle of single-view augmentation and improve the robust-

ness of input data further. To explore the effectiveness of random

adding/dropping technique, we duplicate the target graph and orga-

nize them into tensor forms. The results of variant RT−AUG model

Table 3: The results of ablation study of RT-GCN variants
under nettack with 5 perturbations per node.

RT−AUG RT−TSVD RT−TGCN RTALL

Cora 69.27±1.45 61.20±0.72 63.72±1.51 75.18±0.65
Cora-ML 75.39±0.84 65.16±0.81 65.18±0.27 78.14±1.18
Citeseer 80.79±0.48 71.90±3.95 80.85±0.21 81.11±0.48

without modifying graph under nettack are concluded in Table 3,

where the effectiveness of augmentation technique is verified.

5.3.2 Remove T-SVD Based Low Tubal Rank Approximation. Low
rank tensor approximation is an effective method to clean corrupted

data. To evaluate the contributions of this component, we produce

another variant RT−TSVD removing T-SVDmodule after multi-view

augmentation. Table 3 has shown that T-SVD based low tubal rank

approximation is the indispensable component of RT-GCN.

5.3.3 Remove Tensor GCN. TGCN is able to convolute multi-view

graph from the inter-view and intra-view perspectives simultane-

ously. To verify its effectiveness, we use five vanilla GCN models

to learn node representations separately and the average of five

predictions is utilized as the final performance. As shown in Table

3, TGCN is superior to multiple GCN models when there are multi-

view graphs, which verifies our proposition about the relationship

between vanilla GCN and TGCN.

6 CONCLUSIONS
Improving the robustness of GNNs and protecting them from noise

or adversarial attack is a crucial problem. In this paper, we propose

a novel RT-GCN model, which consists of two major components,
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i.e., T-SVD based graph augmentation and tensor GCN, to tackle

this problem. In addition, we illustrate that the embedding obtained

by TGCN is generically a nonlinear combination of ones learned

by an independent vanilla GCN from each view with respect to the

Lebesgue measure. Extensive experiments show that RT-GCN is

robust enough to resist various attacks and outperforms state-of-

the-art baselines. We also hope that this tensor-based GNN study

leads to a promising perspective in the field of robust GNN.
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A DISCRETE FOURIER TRANSFORM AND
T-PRODUCT

Just like the circulant matrix can be diagonalized by normalized

Discrete Fourier Transform (DFT) matrix, the t-product of tensor

A ∈ R𝑛1×𝑛2×𝑛3
and B ∈ R𝑛2×𝑛4×𝑛3

can be further simplified as:

unfold(C) = bcirc(A) · unfold(B)

= (𝐹𝐻𝑛3

⊗ 𝐼𝑛1
) (𝐹𝑛3

⊗ 𝐼𝑛1
) · bcirc(A) · (𝐹𝐻𝑛3

⊗ 𝐼𝑛2
)

(𝐹𝑛3
⊗ 𝐼𝑛2

) · unfold(B)

= (𝐹𝐻𝑛3

⊗ 𝐼𝑛1
) · bdiag( ¯A) · (𝐹𝑛3

⊗ 𝐼𝑛2
) · unfold(B)

= (𝐹𝐻𝑛3

⊗ 𝐼𝑛1
) · bdiag( ¯A) · unfold( ¯B),

(15)

where 𝐹𝑛3
is the normalized DFT matrix, which is also an unitary

matrix, i.e., 𝐹−1

𝑛3

= 𝐹𝐻𝑛3

. ⊗ denotes the Kronecker product and
¯A is

the result of tensor A transformed along the third dimension by

DFT, and 𝑏𝑑𝑖𝑎𝑔(·) is the block diagonal matrix with its 𝑖-th block

on the diagonal as the 𝑖-th frontal slice of
¯A.

According to Eq. (15), t-product can be implemented by DFT

for saving computational resource. Specifically, we can transform

the two multipliers along the third dimension by DFT, and finish

the frontal-slice-wise matrix multiplication in the Fourier domain.

Then, the final result can be obtained by transforming inverse DFT

on the product along third dimension, again.
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