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Abstract

Multi-view clustering (MVC) focuses on adaptively partitioning data from diverse sources into the respective groups

and has been widely studied under the assumption of complete data. However, real-world applications often encounter

a more realistic incomplete multi-view clustering (IMVC) problem, where data samples are missing in certain views.

There are two challenges in IMVC: 1) how to reduce the impact of the missing instances; 2) how to effectively extract

the consistent information to cluster the multi-view data. To address the challenges, we propose an adaptive graph

learning framework for IMVC, which optimizes the missing information to fit the intrinsic structure of each view

and clusters the multi-view data by cross-view graph matching. The proposed method mainly consists of three steps.

Firstly, owing to the outstanding performance of the intrinsic structure of data, we adapt it to complete the missing

data of each view. Secondly, the connection graph of each view from a projection space is adaptively constructed

wherein the data points are connected if and only if they belong to the same cluster. Thirdly, we further introduce

a cross-view graph matching strategy to appropriately utilize complementary multi-views information and preserve

view-specific semantic information. We develop an iterative algorithm for solving the proposed model. Numerical

experiments on several standard datasets demonstrate the effectiveness of the proposed method.

Keywords: Incomplete multi-view clustering, consensus learning, graph learning, cross-view graph matching.

1. Introduction

In the fields of machine learning, multi-view clustering (MVC) has received increasing attention and achieved suc-

cess in various applications, such as web page classification [1, 2], speech recognition [3], and disease diagnosis [4].

The main idea of MVC is to cluster the data coming from multiple channels or with multiple modalities [5, 6, 7]. Many
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Figure 1: The overall framework of the proposed method CGMIMC. Given a collection of data points with multiple views, {X(1), X(2), . . . , X(m)},

the proposed method optimizes the missing data to form the complete data X(v) +E(v)W(v), so that non-missing information and missing information

can simultaneously guide the consensus learning of each view. Then, the connection graph S(v) of each view is adaptively constructed to transform

the view representation and preserve the pairwise relationship of each view. Finally, we use the cross-view graph matching strategy to minimize

the difference between any two connection graphs to properly achieve view consensus.

methods have been researched for solving MVC, for example, the multi-view k-means clustering [8, 9, 10], the co-

regularized multi-view spectral clustering [11, 12, 13, 14], and the matrix factorization-based clustering [15, 16, 17].

These studies on multi-view learning mainly focus on the clustering of complete multi-view data.

However, due to temporary failures of data collectors or human errors, many practical applications often encounter

the absence of partial views among samples, thereby forming incomplete multi-view data [18, 19, 20, 21, 22]. For

example, a text description of an item to be clustered may be missing. Due to the lack of data for some views,

some rows or columns of the data matrix are missing. As a result, the traditional matrix completion methods cannot

effectively fill the missing entries. Moreover, most existing MVC algorithms that are designed for complete data thus

cannot directly and efficiently handle the incomplete cases. Therefore, incomplete multi-view clustering (IMVC) came

into being with an aim of reducing the impact of missing samples and effectively exploiting multi-view information

to achieve an applicable clustering.

In recent years, various efforts are devoted to solving the IMVC problem. We roughly divide these methods into

two categories. The one category is called the “two-stage” methods [23, 24, 25]. In these methods, incomplete multi-

view data is first filled with missing values through some data preprocessing strategies. Then, some standard MVC

methods are applied to the preprocessed data to obtain the final clustering results. The common data preprocessing

strategies include k-nearest-neighbor completion, mean value completion, and zero-filling. However, with the increase

of the missing views, these simple filling methods may cause a large deviation and also lose the semantic information
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implied by the missing data [26, 20]. To simultaneously infer the missing data and obtain the consistent representa-

tion, the second category of “one-stage” methods is formed. A number of IMVC methods based on the “one-stage”

framework have emerged, such as matrix decomposition-based methods [4, 27, 28], spectral clustering-based meth-

ods [29, 30, 26, 31], and neural network-based methods [32, 33, 34]. These methods aim to learn the consensus

graph/representation to find the common structure of multiple views. However, the value of the learning representa-

tion may be different in each view. Meanwhile, some useful information may be lost when a common representation

is forced. In summary, the prevalent IMVC methods still suffer from the following limitations: (1) the missing view

information has not been well restored to meet the intrinsic structure of data; (2) the missing view information has

not been fully utilized to guide the consensus representation learning; (3) the common structure learning of multiple

views with the highest probability consequently incurs the loss of semantic information.

To address the above issues, in this work, we propose a novel IMVC method called Cross-view Graph Matching

for Incomplete Multi-view Clustering (CGMIMC). In Figure 1, we illustrate the overall framework of our CGMIMC.

On the whole, CGMIMC puts the learning of missing data into an optimization process so that the missing instances

meet the intrinsic structure of each view. Meanwhile, the graph learning strategy is used to convert the representations

of recovered views into the compact graph connection representations that can capture the pairwise relationship.

Therefore, both non-missing views and missing views can jointly guide the consensus representation learning. Then,

we minimize the inconsistency between the pair of connected graphs rather than that among all graphs to reach the

view consensus and preserve view-specific semantic information. The main contributions are as follows:

• We optimize the missing views to meet the intrinsic structure of each view, which can reduce the impact of

missing data and guide the consensus learning on clustering.

•We use cross-graph matching to achieve view consensus and preserve view-specific semantic information, where

the view representation of possible changes is converted to a stable graph connection representation.

• We design an efficient iterative algorithm to solve the proposed model. Numerical experiments on multiple

datasets show the effectiveness of the proposed CGMIMC.

The rest of this paper has the following structure: Section 2 reviews the related representative clustering methods.

Section 3 presents the proposed CGMIMC, including missing data completion and cross-view graph matching. Sec-

tion 4 proposes an iterative algorithm to solve CGMIMC. The analysis and discussions of numerical experiments are

presented in Section 5. Finally, Section 6 summarizes this work.
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2. Related Work

In this second, we review some representative studies related to single-view clustering, complete multi-view clus-

tering, and incomplete multi-view clustering methods.

2.1. Single-View Clustering

The single-view clustering method only considers collecting data from a single source [35, 36, 37]. In order to

cluster high-dimensional data, sparse representation-based [38] and low-rank representation-based [39] subspace clus-

tering methods were studied. Moreover, Peng et al. used graph regularization [40] and structured autoencoders [41]

for subspace clustering. With the development of deep learning, the recurrent graph neural networks clustering

method [34] and the deep fusion clustering network [42] were also proposed. Although these methods are effec-

tive for single-view data, the observed data usually come from diverse domains, each of which denotes a specific

perspective. The above single-view clustering methods do not apply the complementary multi-view information of

the observed data. Therefore, the single-view clustering algorithm is less effective than the MVC algorithm in handling

the multi-view data.

2.2. Complete Multi-View Clustering

MVC has been intensively investigated [9, 43, 12, 44, 45]. The complete MVC methods require that all views

of the observed samples are available. To find the common latent structure among all views, Wang et al. [46] used

a views-agreement constraint to keep the consistency of all views. Meanwhile, Xia et al. [47] learned a common

low-rank graph representation from multiple similarity graphs based on all views. Wang et al. [48, 49] applied the di-

vergence constraint term to coordinate all views to be agreeable by using the low-rank matrix factorization. Similarly,

to minimize disagreement between different views, Zhan et al. [50] proposed a consensus graph clustering method.

Wang et al. [51] fused the data graph matrices of all views into a unified matrix. Tang et al. [7] applied the cross-view

graph diffusion way to obtain a unified graph for data clustering. However, real-world applications often fail to meet

the assumptions that each example of data appears in all views. In fact, every view may suffer from data missing.

Therefore, traditional complete MVC methods are limited in implementing practical applications.

2.3. Incomplete Multi-view Clustering

In recent years, IMVC methods have received extensive attention for processing the incomplete data with multiple

features. For instance, Li et al. [4] presented a partial multi-view clustering (PVC) algorithm to handle incomplete

multi-view data by learning the latent subspace. This approach focuses on the two incomplete views. Hu et al.

[20] extended PVC to IMVC by exploring instance missing information and aligning the clustering centers among
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different views simultaneously. Moreover, by filling the missing entries with the average value in each view, Shao

et al. [23] proposed a clustering approach for incomplete multi-view data. However, the simple filling method has

poor performance with a large number of missing data samples. Based on the common structure among all views,

Wen et al. [21] used graph regularized matrix factorization to solve IMVC by simultaneously exploiting the local

and global information among views. Further, to solve the nonlinear relations between the unified representation

and data of different views, Zhuge et al. [22] learned low-dimensional representations of existing instances and a

shared label matrix. To explore the hidden information of missing instances, Liu et al. [52] proposed an efficient

and effective IMVC method based on multi-kernel k-means clustering, where the absent views and the clustering

result are iteratively updated until convergence. Wen et al. [53] jointly learned the graph completion and common

representation for IMVC. In particular, they used the similarity information of other views to infer the missing views.

Meanwhile, the consensus representation is learned by exploiting shared information across all views. Li et al. [54]

applied the partition space and graph learning for IMVC. To be specific, they first learned the view-specific local

partition with incomplete data, and then integrated the partitions of all views to produce the unified partition and

obtain the consensus graph.

The differences between the proposed method and related works are as follows:

• The single-view clustering method is only suitable for processing data with one feature and cannot directly

process multi-view data. Differently, the proposed method can fully exploit the complementary information of multi-

view data for data clustering.

• The complete multi-view clustering methods require that all views of the observed samples are available. How-

ever, in practical applications, observation samples may be missing from some views. By contrast, our method can

handle the challenging and realistic incomplete multi-view data.

•Most existing IMVC methods [4, 20, 21, 22, 23] either fill the missing entries with the average value, or directly

explore the common structure of incomplete views. By contrast, the proposed method optimizes the missing views to

meet the intrinsic structure of each view, thereby reducing the impact of missing samples for clustering. Compared

with the state-of-the-art IMVC methods [52, 53, 54], instead of forcing all representations to be consistent, we adopt

the cross-graph matching strategy to mine the view consensus while preserving view-specific semantic information.

3. Proposed Method

In the following, we present the proposed method CGMIMC with three tasks, including the view-specific consen-

sus learning, the graph learning, and the cross-view graph matching.

Motivations. Most existing MVC methods have an underlying assumption that each view contains all instances.
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However, the available multi-view data usually is not complete. For example, in document clustering (e.g., a document

has multi-language versions), some documents may not have all translated versions. On the other hand, most MVC

and IMVC methods focus on finding the common features with the highest probability. But for incomplete views,

each view may be very different from other views. In this way, some semantic information may be lost. Therefore,

incomplete multi-view data poses two challenges: Challenge 1) how to reduce the impact of missing instances;

Challenge 2) how to effectively extract the complementary and consistent information to obtain better clustering

results. The solution to Challenge 1 can essentially address the aforementioned limitations (1) and (2) of IMVC

methods while the solution to Challenge 2 can tackle limitation (3).

Problem formulation. We consider the problem of clustering a set of n data points. For MVC, we have m data

views denoted by {X(1), X(2), . . . , X(m)}, where X(v) ∈ Rdv×n and dv denotes the feature dimension of the vth view. For

each X(v), the values of missing entries are filled with 0. In the following, we use the bold upper case letter X, the

bold lower case letter x, and the lower case letter x to denote the matrix, the vector, and the scalar, respectively. We

use the xi,: and x:, j to denote the ith row and the jth column of X, respectively. The (i, j)th element of X is denoted as

Xi, j or xi, j. For convenience, we summarize the important notations used in the proposed method in Table 1.

Table 1: The notations and their meanings.

Notations Meanings Notations Meanings

X, x, and x matrix, vector, and scalar dv the feature dimension of the vth view

xi,: the ith row of X nv the number of missing instances in the vth view

x:, j the jth column of X 1 the column vector of all ones

Xi, j or xi, j the (i, j)th element of X X(v) ∈ Rdv×n the observed data of the vth view

X> the transpose of X E(v) ∈ Rdv×nv the missing data of the vth view

‖ · ‖F , ‖ · ‖2 Frobenius norm, l2-norm U(v) ∈ Rdv×n the consensus representation of the vth view

Tr(·) the trace of the matrix G(v) ∈ Rdv×dv the feature similarity matrix of the vth view

n, m the number of samples, views S(v) ∈ Rn×n the connection graph of the vth view
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3.1. View-Specific Consensus Learning

To address Challenge 1, some IMVC methods only apply the complete views to learn the common structure.

Another strategy is to complete the missing samples by an average and a median to satisfy the data structure. Such a

simple completion strategy not only loses the semantic information of each view, but also leads to a large deviation

in the cases with a high proportion of missing values. Thus, for incomplete multi-view data, how to use the missing

information to learn the consensus representation remains critical and challenging. In this work, we complete the

missing instances by using local feature structures of each view and adequately leveraging underlying information

of missing entries. Specifically, we introduce the error matrix E(v) ∈ Rdv×nv to model the missing data of nv missing

instances. To characterize the relation of the observed data X(v) and the missing data E(v) of the vth view, an index

matrix W(v) ∈ Rnv×n [26] is introduced as follows:

Wi, j =


1, if the ith missing point is the jth point of X(v),

0, otherwise.
(1)

Therefore, we measure the missing data in every single view by the following strategy:

min
E(v),U(v)

‖X(v) + E(v)W(v) − U(v)‖2F

+
λ1

2

dv∑
i, j=1

‖e(v)
i,: − e(v)

j,: ‖
2
2G(v)

i, j ,

(2)

where λ1 > 0 is a parameter, E(v)W(v) just corresponds to the missing data of each view, as shown in the left of

Figure 1. The term X(v) + E(v)W(v) denotes the complete view after filling and e(v)
i,: is the ith row of the matrix E, i.e.,

the ith feature. U(v) is the consensus representation of each view. G(v)
i, j denotes the feature similarity between features

e(v)
i,: and e(v)

j,: . The second term in (2) is to constrain the similar features, since two features are similar to each other

in the missing instances with high similarity under the original instances. Feature similarity matrix G(v) ∈ Rdv×dv is

constructed by mutual knn graph if and only if the ith and the jth features are mutually the k closest neighbors, i.e.,

G(v)
i, j = 1.

According to the properties of normalized graph Laplacians [55, 56], we can easily deduce that 1/2
∑dv

i, j=1 ‖e
(v)
i,: −

e(v)
j,: ‖

2
2G(v)

i. j has the following equivalent form:

Tr(E(v)>L(v)
G E(v)), (3)

where Tr(·) is the trace of the matrix, L(v)
G is a Laplacian matrix of G(v), which is calculated by L(v)

G = D(v) − G(v) with

D(v) = Diag{
∑dv

j=1 G(v)
i, j |i = 1, 2, . . . , dv} is the degree matrix of G(v) .
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It is worth noting that the objective function (2) optimizes jointly the missing view and view-specific consensus

representation so that they can gain from the updates of each other.

3.2. Graph Learning

Let {U(v) ∈ Rdv×n, v = 1, 2, . . . ,m} denotes the projection space (also known as the representation), which takes

the original features as an important basis for learning. So U(v) should be similar to X(v), otherwise it will destroy the

topology. In addition, the representation learning takes into account the similarity between instances. If two instances

have high similarity in the vth view, then their representations u(v)
:,i and u(v)

:, j are also similar. Similarly, graph learning

will need to consider the relationship between the instances. If two instances representation u(v)
:,i and u(v)

:, j are similar in

v views, then s(v)
i, j should be relatively large. Thus, representation learning and graph learning are essentially processes

of mutual influence. According to the above discussion, we set the loss of each view as

L(v)
1 = min

E(v),U(v),S(v)
‖X(v) + E(v)W(v) − U(v)‖2F

+λ1Tr(E(v)>L(v)
G E(v)) +

λ2

2

n∑
i, j=1

‖u(v)
:,i − u(v)

:, j ‖
2
2s(v)

i, j ,

s.t. ∀v, s(v)
i, j > 0, s(v)

i,: 1 = 1, (4)

where 1 is a vector and its all entries are one. By (4), non-missing information and missing information can simulta-

neously guide the consensus representation. The first two steps mainly solve Challenge 1 on handling missing views.

Using the above strategy, the proposed method can reduce the impact of missing samples for clustering.

3.3. Cross-view Graph Matching

To cluster the above completed multi-view data, we match the graphs constructed from the projection space, i.e.,

minimize the difference between any two connection graphs to achieve view consensus. The cross-view loss is set as

L2 = min
S(v)

1
2

m∑
v=1

m∑
w=1,w,v

‖S(v) − S(w)‖2F . (5)

Different from most of the traditional MVC methods, our method matches pairwise connection graphs rather than all

graphs to achieve the purpose of consistency, with the following advantages: the representation U may be significantly

different in each view. Once we force all representations U(v)(v = 1, 2, . . . ,m) to be consistent, the optimization may

be distorted and some useful information may be lost, thereby resulting in poor clustering performance. Instead,

our method facilitates the relationship between U(v) as invariant connection S(v) and makes them as close as possible
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to each other, thereby largely avoiding distorted representations. By designing the cross-view graph matching, the

proposed method solves Challenge 2 and can effectively mine the complementary and consistent information and

preserve view-specific semantic information to achieve excellent clustering results.

Finally, by combining the missing view filling model (4) and the cross-view graph matching strategy (5), we

propose the final optimization function of CGMIMC as follows:

L =

m∑
v=1

L(v)
1 + L2. (6)

We present the overall framework of CGMIMC in Figure 1.

4. Optimization Algorithm

In this section, we develop an iterative algorithm for solving the proposed optimization problem (6). Theoretically,

the problem (6) can be decomposed into three sub-problems: 1) optimizing the missing matrix E, 2) solving the repre-

sentations U, and 3) updating the connection graphs S. We conduct these three sub-problems until convergence. After

the final connection graphs are obtained, we calculate the average graph and apply the spectral clustering algorithm

to obtain the final data partition. Finally, we present the proposed iterative algorithm in Algorithm 1.

4.1. Initialize S(v)

For initializing S(v), the similar graph initialization method in CLR [56] is adopted. To reduce the impact of

missing value on composition, we use the actual instances information X̄(v) ∈ Rdv×(n−nv) and connection graph Ŝ(v) ∈

R(n−nv)×(n−nv). The initialization objective function is

min
S(v)

(n−nv)∑
i, j=1

‖x̄(v)
:,i − x̄(v)

:, j ‖
2
2 ŝ(v)

i, j + γ

(n−nv)∑
i, j=1

ŝ2
i, j,

s.t. ∀i, ŝ(v)
i, j ≥ 0, ŝ(v)

i,: 1 = 1,

(7)

where ŝ(v)
i, j denotes the (i, j)th element of Ŝ(v) and ŝ(v)

i,: is the ith row vector of Ŝ(v). For any two different instances x̄(v)
:,i and

x̄(v)
:, j , once their distance c(v)

i, j = ‖x̄(v)
i − x̄(v)

j ‖
2
2 tend to be smaller, the connection strength ŝ(v)

i, j become larger. The second

regular term on Ŝ(v) makes connection graph Ŝ(v) sparse. Let k be the number of nearest neighbors. We initialize Ŝ(v)

as

ŝ(v)
i, j =


c(v)

i,k+1 − c(v)
i, j

kc(v)
i,k+1 −

∑k
h=1 c(v)

i,h

, j ≤ k,

0, j > k.

(8)
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Algorithm 1 The iterative algorithm for solving (6).
Input: observed data X(v)(v = 1, 2, . . . ,m) with m views, parameters λ1, λ2, number of clusters c.

Output: for v = 1, 2, . . . ,m, missing matrix E(v), representation U(v), connection graph S(v), and final clustering

results.

Initialization: E(v), U(v), and S(v) for v = 1, 2, . . . ,m.

1: for iterator = 1 to T do

2: Optimize {E(v)}mv=1 according to Eq. (11).

3: Optimize {U(v)}mv=1 according to Eq. (13).

4: Optimize {S(v)}mv=1 according to Eq. (15).

5: end for

6: S = 1
m

∑m
v=1 S(v), applying spectral clustering on S to obtain optimal clustering results.

In order to get the complete graph S(v), we perform a conversion operation on Ŝ(v)

S(v) = R(v)T Ŝ(v)R(v), (9)

where R(v) ∈ R(n−nv)×n denotes the relation matrix as follows:

R(v)
i, j =


1, if the ith instance of X̂(v) is the jth one of X(v),

0, otherwise.
(10)

4.2. Update E(v)

The objective function L(v)
E is as follows:

λ1Tr(E(v)>L(v)
G E(v)) + min

E(v)
‖E(v) − U(v)W(v)>‖2F .

Using the optimal condition ∂L(v)
E /∂E(v) = 0, we obtain the following closed-form solution:

E(v) = (I + λ1L(v)
G )−1U(v)W(v)>. (11)
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4.3. Update U(v)

We fix the other irrelevant variables and update U(v) as

min
U(v)
‖X(v) + E(v)W(v) − U(v)‖2F +

λ2

2

nv∑
i, j=1

‖U:,i − U:, j‖
2
2si, j

= min
U(v)
‖X(v) + E(v)W(v) − U(v)‖2F + λ2Tr(U(v)L(v)

S U(v)>).

(12)

Similar to the update of E(v), we calculate U(v) by

U(v) = (X(v) + E(v)W(v))(I + λ2L(v)
S )−1, (13)

where L(v)
S = DS(v) − S(v).

4.4. Update S(v)

Fixing variables E(v) and U(v), the optimization problem of S(v) is

min
S(v)

λ2

2

n∑
i, j=1

‖U(v)
:,i − U(v)

:, j ‖
2
2s(v)

i, j +
1
2

m∑
w=1

‖S(v) − S(w)‖2F ,

s.t. s(v)
i, j > 0, s(v)

i,: 1 = 1.

(14)

It can be decoupled into multiple sub-problems to solve. Let yi, j = ‖U(v)
:,i − U(v)

:, j ‖
2
2, and yi,: denotes the vector that the

jth element is yi, j. Then, the above formula is equivalent to

min
s(v)

i,:

∥∥∥∥∥∥∥s(v)
i,: −


∑

w=1,w,v s(w)
i,:

m − 1
−

λ2y(v)
i,:

2(m − 1)


∥∥∥∥∥∥∥

2

2

,

s.t. s(v)
i,: 1 = 1, s(v)

i, j > 0,

(15)

which can be effectively solved by the iterative algorithm in [57].

4.5. Time Complexity Analysis

The main time cost of Algorithm 1 depends on the calculation of subproblems E (11), U (13), and S (15). Next,

we analyze the time complexity of three sub-problems. In Algorithm 1, the complexity of Steps 2 and 3 are O(mdvnn̂+

md2
v n̂) and O(mdvnn̂ + mn3 + mdvn2), respectively, where n̂ = max (n1, n2, . . . , nm). According to [57], the complexity

of Step 4 is O(mn2 log n). Therefore, the total computational complexity is O
(
Tm(dvnn̂ + n3 + dvn2 + d2

v n̂ + n2 log n)
)
,
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where T denotes the number of iterations in Algorithm 1. Since the dimension dv of the feature is generally much

smaller than the number n of data instances, the total time complexity is O(Tmn3).

5. Numerical Experiments

We test the proposed CGMIMC for IMVC on four standard multi-view datasets. We also evaluate the impact of

the parameters and analyze the convergence of the proposed algorithm.

5.1. Experimental Settings

Datasets. Following the conventional study in multi-view learning, in Table 2, we show the common multi-view

datasets to test the proposed method. The dataset Caltech101-7 contains 1,474 samples from 7 categories and the

dataset Caltech101-20 contains 2,386 samples from 20 categories, where each sample is represented by 6 views. The

dataset Flower17 1 contains 17 classes of flower image data sets, each consisting of 80 images. Meanwhile, seven

different features are extracted as views. The dataset NUS 2 is an object recognition database. It includes 31 classes

with 2,000 images, and each image has 5 views.

Table 2: Characteristics of the used multi-view datasets.

Datasets instances views clusters

Caltech101-7 1,474 6 7

Caltech101-20 2,386 6 20

Flower17 1,360 7 17

NUS 2,000 5 31

Compared algorithms. To compare with our proposed CGMIMC, we consider one single view baseline, one

multi-view graph learning baseline, and four IMVC baselines as follows.

• BSV [58]: Best single view (BSV) uses the average instance of each view to add the missing entries, and

independently conducts k-means for each view and displays the highest clustering index.

• GMC [51]: The graph-based multi-view clustering (GMC) fuses connection graphs of all views together to

build a unified connection graph. Again, missing data is populated with the average value of each view.

1http://www.robots.ox.ac.uk/~vgg/data/flowers/
2https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
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Table 3: The average NMIs (mean± variance) of different methods on four test datasets. The number in bold indicates the best result.

Datasets R BSV GMC MIC DAIMC IMSC PIC EE-IMVC AGC-IMC CGMIMC

Caltech101-7

0.1 0.3839±0.0427 0.5492±0.0000 0.4877±0.0340 0.4346±0.0279 0.4569±0.0150 0.5242±0.0142 0.3932±0.0000 0.5040±0.0196 0.6239±0.0000

0.2 0.3302±0.0352 0.2159±0.0000 0.4831±0.0372 0.4330±0.0198 0.4334±0.0008 0.5228±0.0022 0.4013±0.0000 0.5299±0.0000 0.6156±0.0000

0.3 0.2933±0.0314 0.5325±0.0000 0.4781±0.0371 0.4413±0.0223 0.4235±0.0044 0.5429±0.0130 0.3460±0.0000 0.5246±0.0000 0.6113±0.0000

Caltech101-20

0.1 0.4990±0.0194 0.3945±0.0000 0.5842±0.0140 0.5492±0.0144 0.5448±0.0121 0.5665±0.0065 0.5331±0.0000 0.5677±0.0001 0.6316±0.0000

0.2 0.4604±0.0128 0.5412±0.0000 0.5843±0.0141 0.5530±0.0158 0.5279±0.0055 0.5620±0.0080 0.5193±0.0000 0.4295±0.0004 0.6194±0.0000

0.3 0.4166±0.0032 0.4073±0.0000 0.5836±0.0178 0.5593±0.0131 0.5213±0.0088 0.5614±0.0069 0.4958±0.0000 0.5346±0.0000 0.6125±0.0000

Flower17

0.1 0.3745±0.0072 0.2644±0.0000 0.3299±0.0087 0.4884±0.0094 0.5268±0.0084 0.5175±0.012 0.5369±0.0000 0.4049±0.0000 0.5346±0.0000

0.2 0.3328±0.0071 0.2751±0.0000 0.3250±0.0038 0.4866±0.0146 0.4932±0.0021 0.5172±0.0059 0.5150±0.0000 0.3994±0.0000 0.5259±0.0000

0.3 0.2959±0.0057 0.1182±0.0000 0.3245±0.0054 0.4773±0.0100 0.4749±0.0039 0.4948±0.0042 0.4931±0.0000 0.3540±0.0000 0.5068±0.0000

NUS

0.1 0.1536±0.0045 0.0657±0.0000 0.0300±0.0090 0.1885±0.0050 0.1711±0.0034 0.1861±0.0035 0.1571±0.0000 0.1230±0.0005 0.1922±0.0000

0.2 0.1418±0.0019 0.0628±0.0000 0.0300±0.0043 0.1862±0.0059 0.1775±0.0030 0.1731±0.0029 0.1661±0.0000 0.0805±0.0000 0.1889±0.0000

0.3 0.1274±0.1194 0.0664±0.0000 0.0300±0.0070 0.1823±0.0055 0.1738±0.0046 0.1773±0.0028 0.1554±0.0000 0.0705±0.0000 0.1778±0.0000

• MIC [23]: Multiple incomplete views clustering (MIC) via weighted NMF is a feasible method for incomplete

data clustering, which completes missing examples with the view-specific average feature and then learns a

common consensus matrix with the co-regularization approach.

• DAIMC [20]: Based on weighted semi-nonnegative matrix factorization, doubly aligned incomplete multi-view

clustering method (DAIMC) applies the given instance alignment information to obtain the shared latent feature

matrix of all views.

• IMSC [30]: Adaptively learning multiple incomplete graphs using subspace learning, incomplete multi-view

spectral clustering (IMSC) approach applies the spectral clustering on the generate a complete graph from whole

incomplete graphs.

• PIC [59]: Spectral perturbation based incomplete multi-view clustering (PIC) approach transfers the missing

data problem to similarity-value missing problem. It uses a similarity matrix completion scheme to fill the

missing similarity entries and then performs clustering on the consensus matrix.

• EE-IMVC [52]: Based on multi-kernel k-means clustering, the efficient and effective incomplete multi-view

clustering (EE-IMVC) approach iteratively updates the absent views and the clustering result until convergence.

• AGC-IMC [53]: The adaptive graph completion-based incomplete multi-view clustering (AGC-IMC) method

uses the similarity information of other views to infer the missing view. In particular, the consensus representa-

tion is learned by exploiting shared information across all views.
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Table 4: The average ACCs (mean± variance) of different methods on four test datasets. The number in bold indicates the best result.

Datasets R BSV GMC MIC DAIMC IMSC PIC EE-IMVC AGC-IMC CGMIMC

Caltech101-7

0.1 0.4904±0.0951 0.6791±0.0000 0.4259±0.0374 0.4242±0.0471 0.5505±0.0006 0.6513±0.0057 0.3548±0.0000 0.6583±0.0004 0.6839±0.0000

0.2 0.4282±0.0780 0.4294±0.0000 0.4079±0.0405 0.4303±0.0361 0.5516±0.0000 0.6443±0.0116 0.3514±0.0000 0.6628±0.0000 0.6858±0.0000

0.3 0.4019±0.0486 0.6757±0.0000 0.4024±0.0381 0.4256±0.0451 0.5464±0.0036 0.6526±0.0031 0.3602±0.0000 0.6546±0.0000 0.6850±0.0000

Caltech101-20

0.1 0.4046±0.0326 0.4384±0.0000 0.4156±0.0222 0.4451±0.0237 0.4590±0.0288 0.5380±0.0173 0.4434±0.0000 0.5165±0.0000 0.5578±0.0000

0.2 0.3460±0.0290 0.5591±0.0000 0.4065±0.0267 0.4539±0.0378 0.4520±0.0193 0.5333±0.0091 0.4464±0.0000 0.4844±0.0000 0.5595±0.0000

0.3 0.3247±0.0017 0.4317±0.0000 0.4047±0.0253 0.4672±0.0271 0.4559±0.0130 0.5436±0.0194 0.3982±0.0000 0.4812±0.0000 0.5523±0.0000

Flower17

0.1 0.3515±0.0070 0.2537±0.0000 0.2772±0.0086 0.4738±0.0118 0.5060±0.0131 0.5219±0.0256 0.5515±0.0000 0.3860±0.0000 0.5458±0.0000

0.2 0.3169±0.0080 0.2566±0.0000 0.2685±0.0104 0.4909±0.0146 0.4901±0.0020 0.5229±0.0250 0.5015±0.0000 0.3801±0.0000 0.5389±0.0000

0.3 0.2885±0.0075 0.1544±0.0000 0.2707±0.0055 0.4622±0.0118 0.4712±0.0037 0.5066±0.0160 0.5059±0.0000 0.3382±0.0000 0.5279±0.0000

NUS

0.1 0.1521±0.0029 0.1440±0.0000 0.1245±0.0066 0.1619±0.0050 0.1489±0.0036 0.1549±0.0045 0.1475±0.0000 0.1535±0.0000 0.1680±0.0000

0.2 0.1550±0.0040 0.1430±0.0000 0.1245±0.0080 0.1610±0.0039 0.1600±0.0025 0.1566±0.0050 0.1575±0.0000 0.1480±0.0000 0.1650±0.0000

0.3 0.1565±0.1419 0.1525±0.0000 0.1245±0.0073 0.1601±0.0052 0.1536±0.0059 0.1582±0.0038 0.1490±0.0000 0.1475±0.0000 0.1575±0.0000

Evaluation metrics. We adopt two evaluation indicators: the Normalized Mutual Information (NMI) and the

clustering Accuracy (ACC) [26] for testing the clustering performance of our method. ACC is the accuracy metric

computed for the best matching permutation between clustered labels and true labels. Based on the information

theoretic, NMI can balance the quality of the clustering against the number of clusters. All indicators are distributed

within the range [0, 1]. The higher the NMI and ACC values, the better the clustering performance. We run each

experiment 10 times and take the average value and the variance as the final clustering result.

Parameters setting. In the following experiments, to construct the incomplete multi-view test datasets, we ran-

domly remove the same probability samples of each view. Missing probability R represents the probability of missing

samples taking up all the samples and is set to 0.1, 0.2, 0.3, and 0.5, respectively. When constructing the feature simi-

larity matrix of the view G, We use the cosine similarity to calculate the similarity between the features and set k as 8

for the closest neighbors. When initializing the connection diagram S, we set k as 10 for each of its closest neighbors.

For all comparison methods, the parameters are well-tuned to obtain the best performance, which is consistent with

the values recommended in their corresponding papers.

5.2. Experimental Results

Tables 3 and 4 represent the average NMI and ACC values of each comparison method and the proposed CGMIMC

on tasted datasets when the miss probability R is 0.1, 0.2, and 0.3, respectively. According to these results, we have

the following observations:

(1) From Tables 3 and 4, we observe that the single view clustering method BSV shows poor performance in most
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cases because it only used single view data without complementary information. As a comparison, by effectively

using the complementary information of multi-view data, other methods obtain the better clustering results.

(2) Compared with the graph-based MVC method GMC and NMF-based incomplete multi-views clustering

method MIC, the methods DAIMC, IMSC, PIC, and the proposed CGMIMC achieve a great improvement in terms

of NMI and ACC values. The main reason is that missing entries are completed with the average value of each view

so that some important features are destroyed. Thus, GMC and MIC are not effective in test datasets by simply filling

the missing value with the mean value. The proposed method CGMIMC infers the missing information to satisfy the

intrinsic structure of the view and effectively reduces the impact of missing samples.

(3) Compared with the incomplete multi-view clustering methods DAIMC, IMSC, PIC, EE-IMVC, and AGC-

IMC, the proposed CGMIMC achieves a better performance in terms of NMI and ACC values in most cases. The

reason may lie in the fact that these compared methods force a common representation of multiple non-identical

views, thereby leading to some view-specific semantic information being lost. This demonstrates that our CGMIMC

can adequately utilize the complementary multi-view information and preserve view-specific semantic information to

improve the clustering results.
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Figure 2: The clustering comparison of different methods on the dataset Caltech101-7 with R = 0.5.

(4) To test the robustness of CGMIMC, in Figure 2, we show the clustering performance of all compared methods

on Caltech101-7 dataset with the large missing rate R = 0.5. Clearly, the proposed CGMIMC achieves the best results

in both clustering metrics. Specifically, when the missing rate R = 0.5, compared with the second-best PIC method,

our CGIMC improves NMI and ACC by 7.84% and 3.53%, respectively. In addition, although the GMC method is

not designed for the IMVC problem, the average strategy is better than many clustering methods for incomplete data,

which also shows that the other comparison methods cannot solve the problem of the missing views well. In summary,

our CGMIMC still has significant advantages over other methods with the increase of missing data.
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5.3. Convergence Analysis

In theory, the original model (6) is not a joint convex problem about E, U, and S . And the global optimal solution

cannot be guaranteed. For the first and second sub-problems, the solutions of E and U are closed-form solutions.

The third sub-problem S is solved by an efficient iterative algorithm. Therefore, in theory, the proposed alternating

iteration algorithm for solving CGMIMC will converge to a locally optimal solution. Next, we study the numerical

convergence of our Algorithm 1.
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Figure 3: The curves of variable loss changes versus iterations on datasets Caltech101-7, Caltech101-20, and Flower17.

To show the convergence of the proposed algorithm numerically, taking Caltech101-7, Caltech101-20, and flower17

datasets as examples, we show the variable loss changes curves in Figure 3(a) (R = 0.1) and Figure 3(b) (R = 0.5).

We observed that the loss curves decrease rapidly (less than 10 iterations), then remain steady with the increase of the

iterations. This demonstrates that the proposed algorithm is convergent numerically.

5.4. Parameters Analysis

We test the influence of different parameter settings on the proposed method. The trade-off parameters λ1 and

λ2 are selected from the range of {0.001, 0.01, 0.1, 1, 10, 100}. We test the influences of the parameters λ1 and λ2 on

Caltech101-7 dataset with the missing rate R as 0.1. As shown in Figure 4, we observe that the proposed method

CGMIMC is robust to the choice of λ1. Although the parameter λ2 has a small impact on the clustering metrics NMI

and ACC, our method CGMIMC is also robust to the different λ2.

6. Conclusion

We propose an incomplete multi-view clustering method called CGMIMC based on cross-view graph matching.

Compared with existing IMVC methods, CGMIMC has the following advantages: 1) CGMIMC optimizes the missing

value to meet the intrinsic structure of each view, thereby reducing the impact of missing data on clustering. 2)
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Figure 4: The influences of the parameters λ1 and λ2 for the proposed method.

CGMIMC innovatively transforms the view representation into the graph connection representation while maintaining

invariability. 3) CGMIMC realizes the consensus of multiple views through the cross-view graph matching strategy

with the preservation of view-specific semantic information. The effectiveness and superiority of CGMIMC have been

evaluated by numerical comparison experiments on representative datasets. In the future, more efficient and robust

algorithms will be considered for large-scale datasets. Other learning tasks including semi-supervised and supervised

learning are also within the scope of the next research.
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