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a b s t r a c t

Reciprocal Recommender Systems (RRSs) are recommender systems specifically designed for people-
to-people recommendation tasks, e.g., online gaming, dating, and recruitment services. They are
fundamentally different from the conventional user–item recommendations. In RRSs, user interactions
are usually directional, i.e., they are initiated by one side and not necessarily reciprocated by the
other side. In the meanwhile, abundant multiplex user interactions, e.g., Friend Request and Send
Message, are collated by the online services and can be represented into a large-scale multiplex user
interaction graph. Despite the substantial progress of Graph Neural Networks (GNNs) on capturing
users’ multiplex interactions, naive GNNs are insufficient to capture the additional information implied
from the directions of interactions, as they are usually not designed to preserve the asymmetric
proximities between users.

In the paper, we present a novel Graph neural network for Reciprocal Recommendation (GraphRR)
to utilize the multiplex user interactions. Specifically, three ego graphs are augmented based on
the directions of interactions for each user to capture his preference, attraction and similarity in
a finer granularity. Then the multiplexity-aware GNN modules are further applied to measure the
contributions of different interaction types. Extensive experiments are conducted in the datasets of
the real-world large-scale online games from NetEase Games, a leading game provider for worldwide
users. The experimental results demonstrate the superiority of GraphRR over baseline methods and
provide empirical evidence for the benefits of the proposed ego graph augmentation. The source code
is also available online for reproductivity1.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Recommender Systems (RSs) have been widely developed
nd employed in a variety of applications including E-commerce
hopping systems [1,2], social media [3], and online video ser-
ice [4], etc. However, these conventional user–item RSs are
ncapable of accommodating people-to-people recommendation
cenarios, as they only consider users’ unidirectional preference
oward inanimate items. While the recommended items cannot
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X. Xing).
1 https://github.com/changym3/GraphRR
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950-7051/© 2022 Elsevier B.V. All rights reserved.
‘‘reject’’ users in the classical RSs, unilateral behaviors occur
frequently in the people-to-people recommendation.

Reciprocal Recommender Systems (RRSs) aim to connect users
with mutual preference, i.e., reciprocity, in the people-to-people
recommendation scenarios. For instance, there are some RRSs in
online games designed for recommending mutually preferable
teammates/friends to increase gamer’s engagement. Fig. 1 shows
an example of RRS on the online game Knives Out, which is a
popular mobile game in China. When gamers require the rec-
ommendation result, the recommender system aims to provide
a user list that is appealing to users from both sides. Apart from
the online gaming service, there also exist many other important
domains that involve reciprocal recommendations, including on-
line social platform [5], online dating [6] and recruitments [7],
etc. In spite of the urgent requirements of these applications,
RRSs have received little attention compared to the conventional
recommender system.
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Fig. 1. An example of the RRS in the online game service Knives Out. The left screen is the home page of the gamers, where they may click the ‘‘INVITE TO TEAM’’
utton to find teammates from the system and then initiate an invitation request to other users. The right screen shows the receiver’s response to the request.
hen the first gamer clicks the ‘‘Invite’’ button and the second gamer clicks the ‘‘Accept’’ button, the reciprocity is satisfied in this recommendation.
The objective of RRSs is to create a mutually preferable match
etween two users, which renders the task of reciprocal rec-
mmendation more complex and challenging. The RRS research
n the literature can be generally divided into two categories:
ontent-Based (CB) and Collaborative Filtering (CF). The CB ap-
roaches [6] are primarily based on the description of items and
ser profiles, thus heavily relying on the attributes by feature
ngineering. The CF-based approaches [8,9] propose to capture
he collaborative signals between similar users based on their
istorical interactions. The limitation of CF-based methods lies
n their non-scalability due to the extravagant calculation of the
imilarities over all pairs of users. A recent work [10] takes advan-
age of the latent factor model to generate user embeddings from
he dual interaction matrix, showing significant improvement
n both performance and computational efficiency compared to
ther CF-based approaches. Nevertheless, it is still limited in
ating scenarios, which inherently have two clear roles (male and
emale) to be matched. It cannot generalize well to some complex
eciprocal scenarios, e.g., the online gaming service.

As user interactions can be intrinsically described in graph-
tructured data, where nodes represent users/items and edges
epresent users’ interactive behaviors, there have been many
rominent studies [3,11,12] incorporating graph-based
echniques into recommender systems. These methods leverage
raph Neural Networks (GNNs) [13], an emerging paradigm for
raph representation learning, to effectively generate user repre-
entations. One of the significant advantages is their expressive
apacities to jointly learn node attributes and graph structures.
nother advantage lies in their strong extensibility to tackle
he multiplexity of graphs, where multiple types of edges may
xist between two nodes. Recently, some works [14,15] have
lso demonstrated the effectiveness of multiplex GNNs in the
ser interaction graph, facilitating the recommender systems to
xplore more fine-grained user portraits.
Despite their promising success in conventional recommender

ystems, GNNs remain relatively unexplored in the large-scale
eciprocal recommender system. It is beneficial to combine GNNs’
apacity into RRS to determine users’ reciprocity. However, de-
igning GNNs for reciprocal recommender systems poses unique
hallenges. First, the requirement of reciprocity cannot be directly
ulfilled by applying GNNs on the directional interaction graph
s in the conventional user–item recommendation scenarios. We
ill show a detailed analysis in the paper that user interaction
raphs declare the properties of heterophily, asymmetry, and
2

non-transitivity. These properties render traditional GNNs insuf-
ficient to capture the information implied from the directions of
interactions. Second, users continually generate multiplex inter-
actions, which reveal different aspects of user portraits in the
online service. The measurement of contributions of multiplex
interaction needs to be considered by the RRS.

Concerning the challenges mentioned above, in this work, we
propose a carefully designed multiplex Graph based Reciprocal
friend Recommender system (GraphRR) with applications on two
online games to enhance gamers’ engagement. Here we propose
five research questions to guide readers to introduce our works
and contributions:

RQ1 Why common recommendation methods are insufficient to
capture users’ portraits?

RQ2 Why multiplexity is important in the scenarios of recom-
mendation?

RQ3 Why does the direction of each interaction need to be con-
sidered in the reciprocal recommendation?

RQ4 Why GNNs cannot be directly applied in the directional user
interaction graph for the reciprocal recommendation?

RQ5 How to utilize GNNs in the task of reciprocal recommenda-
tion?

To summarize, our key contributions are three-fold:

• In view of the unidirectionality of the user interaction graph,
we analyze its property of heterophily, asymmetry, and non-
transitivity, which is handled by the proposed mechanism of
the ego graph augmentation.

• We provide a GNN-based solution for RRSs, namely GraphRR,
to capture users’ preference, attraction and similarity sepa-
rately. Besides, the attentive aggregation is integrated into
GraphRR to further utilize the multiplex users’ interactions
in the online service.

• We conduct extensive experiments on the datasets from
real-world online games and demonstrate that the proposed
GraphRR outperforms a series of baseline methods.

The remainder of the paper is structured as follows: Section 2
discusses the related work. Section 3 formulates the task of the
reciprocal recommendation and describes the notations used in
the paper. In Section 4, we provide the analyses that motivate
the designs of the proposed GraphRR. In Section 5, we introduce

the details of the proposed GraphRR, including the ego-graph
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ugmentation and the multiplex graph neural networks. Exper-
mental results are shown in Section 6 to verify the effectiveness
f the proposed method. Finally, the conclusion and future work
re discussed in Section 7.

. Related work

In this section, we review studies related to the proposed
ethod, including the convectional user–item recommendation,

he reciprocal recommendation, and the recently emerging graph-
ased recommendation.

.1. User–item recommendation

The purpose of the user–item recommendation is to proac-
ively provide customized items for users by extrapolating their
references towards items. The user–item recommender systems
re mainly categorized into collaborative filtering, content-based
nd hybrid approaches [16]. The content-based recommendation
s primarily based on the auxiliary characteristics of users’ and
tems’ content, including texts, images, and videos. Collaborative
iltering is one of the most widely used and successful tech-
iques in modern recommender systems, which analyzes the
imilar interests among users’ historical interactions [17,18]. Hy-
rid approaches are the combinations of content-based and col-
aborative filtering techniques with different strategies. With the
evelopment of deep neural networks, NeuMF [19] seamlessly
ombines the matrix factorization and the multi-layer perceptron
nto the recommender system. NAIS [20] introduces the attention
echanism to differentiate the contributions of items.
Besides, the multi-behavior recommender system is an emerg-

ng branch in the research of the user–item recommendation,
here there are multiple types of user behaviors or interactions
o be leveraged. Some previous works usually extend conven-
ional recommender systems into multiple user behaviors to cap-
ure different semantics [21–23]. Specifically, CMF [21] proposes
o decompose the user interaction matrices of different behav-
ors simultaneously. MF-BPR [22] adapts the sampling strategy
ith interaction-aware sampling probability to handle multiple
ser feedbacks. NMTR [23] solves the problem of multi-behavior
ecommendation under the paradigm of multi-task learning. Re-
ently, MBGCN [24] proposes to represent multiple user behav-
ors into a unified multiplex graph and leverages graph convolu-
ional networks to obtain user embeddings by applying the graph
ggregation discriminately.
Though these methods have been demonstrated effective in

he user–item recommendation scenarios, but they cannot be
irectly applied in the reciprocal setting as they only consider the
nidirectional preference of users towards items.

.2. Reciprocal recommendation

There are various approaches of RRSs being investigated, which
an be broadly divided into two categories, content-based (CB)
nd collaborative filtering based (CF). One of the best-known
tudies of CB methods for RRS is RECON [6]. RECON is designed
or the dating scenario, and firstly calculates users’ unidirec-
ional preference scores to each other and combines these two
cores into a reciprocity score by harmonic mean. As CF-based
ethods achieve promising results in the user–item recommen-
ation, some studies [5,8,9] also introduce the collaborative fil-
ering technique into RRS solutions. However, it cannot scale into
eal-world datasets that contain millions of users [25]. Recently,
FRR [10] proposes to extrapolate users’ latent vectors based
n matrix factorization. Concretely, LFRR constructs two pref-
rence matrices: female-to-male preferences and male-to-female
 l

3

preferences. LFRR trains two latent factor models and estimates
the reciprocity score by the dot product of latent vectors, which
greatly reduces the computational complexity of collaborative
filtering. However, current RRS methods still have simple model
architectures and limited expressive capacities. Moreover, they
only consider the first-order interactions and cannot capture the
high-order user semantics.

2.3. Graph-based recommendation

Motivated by the recent success of Graph Neural Networks
(GNNs), much effort has been devoted to applying GNNs on
recommendations [3,11,26]. For example, GCMC [26] takes ad-
vantage of the graph auto-encoder, which firstly encodes users
and items by the differentiable message propagation on the user–
item graph and decodes the latent representations to complete
the rating matrix in recommendations. PinSage [3] integrates
both graph structures and node attributes by combining ran-
dom walks and graph convolutional networks [27] to facilitate
recommendations on web-scale graphs. NGCF [11] explores the
high-order connectivities in the user–item bipartite graph by per-
forming embedding propagation. LightGCN [28] simplifies GCN
for the recommendation task by removing the transformation
and nonlinear activation. Besides, there also emerges some stud-
ies [29] recently on the representation learning of heterogeneous
graphs, which can be applied on the multiplex graph for the
recommendation task. Despite the successful efforts on graph
representation learning, there are still no previous studies that
incorporate the powerful multiplex graph neural networks into
RRSs to estimate the reciprocity score between users.

3. Problem formalization and notations

In this section, we first formulate the user interactions with
multiple types as a multiplex graph, and specify the definition of
reciprocal friends recommendation problems in the application of
online games. The notations used in the paper are summarized in
Table 1.

3.1. Multiplex interaction graph

In real-world scenarios of the online social system, users can
interact with other users in multiple manners, e.g., Friend Request,
Game Like, Send Gift, etc. These user interactions are represented
in a large-scale multiplex graph G = (V, E,X), where V denotes
the user set and E denotes the edge set. Each edge in E represents
a directional interaction between users. As each user may have
various types of interactions, the edge set E can be specialized
as E = Et1 ∪ Et2 ∪ · · · ∪ EtT , where Etk denotes the set of users’
nteractions under the tk type . The set of all interaction types
re denoted as TE = {t1, t2, . . . , tT } and there are T types of
ser interactions totally. Besides, each user is associated with an
ttribute representation, jointly denoted in the matrix form as
∈ RN×F , where N is the number of users and F is the dimension
f attribute representation. The user features usually reveal some
ignificant patterns of their engagement in the platform, e.g., the
ser’s competitive performance and social activity in the online
aming scenario.

.2. Reciprocal friend recommendation

The reciprocal friend recommendation is to recommend mu-
ually preferable users to each other for co-participating in some
ocial activities, e.g., co-gaming or friending in our application.
he reciprocal friend recommendation problem can be formu-

ated into a link prediction task in the multiplex graph. Given user
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Table 1
The notations in the paper.
Notations Explanations

G = (V, E,X) Graph
V The user set in the graph
E The multiplex interaction set in the graph
X The user attribute matrix
t Interaction type
W(l) The transformation matrix in the lth layer
H, h The user hidden representation in the form of matrix or vector
Et Interaction set under interaction type t in the graph
Nu,t The u’s neighbors under interaction type t
Eu,t The u’s interaction set under interaction t
(src, dst) Interaction between users src and dst
Eseed
u,t The t-type seed interactions of user u in reciprocity augmentation

Eknn
u,t The t-type kNN co-interactions of user u in reciprocity augmentation

s(src,dst),t The unnormalized importance coefficient of the t-type interaction (src, dst)
α(src,dst),t The normalized importance coefficient of the t-type interaction (src, dst)
e∗

u,sim The user u’s representation in the similarity graph.
e∗

u,pref The user u’s representation in the preference graph.
e∗
u,attr The user u’s representation in the attraction graph.
e∗
u The user u’s ultimate representation.
Fig. 2. The distribution and the cumulative distribution of the interaction Approve Friend Request .
pairs (u, v) and type of the target interaction t ∈ TE , the reciprocal
recommender should exploit the users’ preferences in advance
by utilizing all kinds of user historical interactions {t1, t2, . . . , tT }
and recommend the most mutually preferable candidate v to u.
Formally, the label of link prediction can be defined as whether
these two users have the target interaction of t in a period, which
be expressed as

ytuv =

{
1, if u has the interaction with v under behavior t;
0, otherwise.

(1)

Given the historical interactions of all users as well as the label
of user pairs (u, v), the recommendation model aims to estimate
the probability that user u and v interact with each other under
the target positive interaction t after the system matching in the
co-participation of some activities.

4. Analyses

In this section, we provide the data exploratory analysis to
demonstrate the importance of considering multiplex interac-
tions and interaction directions. Besides, we also provide a theo-
retical analysis of GNNs for modeling reciprocity.

4.1. The data analysis

Before we formalize our approach, we conduct an exploratory
data analysis of the user interaction graph in our scenario, the
online game service. The exploratory data is collected from the
4

training data of Knives Out. The detailed data statistics are de-
scribed in Section 6.

Long-tail distribution of interaction (RQ1). Fig. 2(a) shows
the distribution and cumulative distribution of the interaction
Approve Friend Request. It is observed that these quantities ap-
proximately follow the power law, which indicates that a small
portion of users contributes a large number of interactions. If we
only leverage Approve Friend Request to predict whether users
approve friend requests from others, this skewed distribution and
the sparsity of the training data and labels leads to the degra-
dation of the model’s predictive abilities for the long tail users.
To solve the problem, we could utilize the auxiliary interaction
such as Accept Team Invitation, Game Like, which usually are more
frequent in the game, to assist the training of sparse target labels.

The diverse homophily distribution over multiplexity (RQ2).
This empirical study is to validate whether the multiplexity in-
formation is distinctive. We begin by characterizing multiplex ho-
mophily on each normalized feature with respect to the topology
of different interaction types. We define st(src,dst) as the interaction
homophily between a user src and another user dst , where src has
an t-type interaction with dst . Then the multiplex homophily on
the features for interaction t is computed by the mean over all
interactions of this type, define by:

st =
1

|Et |

∑
(src,dst)∈Et

st(src,dst) st(src,dst) = |xsrc − xdst |. (2)

For simplicity, we only visualize the multiplex homophily on
the first ten features for all interactions in Fig. 3. It is observed
that the homophily varies significantly over multiplexity for a
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Fig. 3. The diverse homophily distribution implied from the multiplex topology of interactions.
Fig. 4. The diverse homophily distribution implied from the directionality of interactions. The letter ‘‘I’’ denotes the interaction initiator and ‘‘R’’ denotes the interaction
receiver.
m

majority of features, indicating the diverse distribution of user
patterns with respect to the topological homophily.

The diverse homophily distribution over directionality
RQ3). This empirical study is to validate whether the directional-
ty reveals various semantics. We investigate the average features
f the interaction initiator and receiver and show the statistics
n Fig. 4. Evidently, substantial feature difference between the
nitiators and receivers is observed to a varied extent regarding
he interaction type. The discrimination of initiators and receivers
s informative as they reveal distinctive semantics of personalized
ocial patterns. For example, a gamer who receives quantities of
riend Requests from other gamers probably owns superb com-
etitive skills in the online gaming service. This analysis verifies
he various engagement pattern of the interaction initiators and
eceivers, which motivate our model design in the reciprocal
etting.

.2. The analysis of GNNs for reciprocity (RQ4)

As stated before, many user interactions are directional, im-
lying that only a single side shows willingness while the other
ide may be indifferent even repulsive to his enthusiasm.
The directionality of user interactions has a twofold effect.

n the one hand, it provides a finer granularity to describe
ser profiles from two dimensions, i.e., preference and attraction.
s shown in Fig. 5, user u1 shows his attraction to {u2, u3, u4}

hile he only prefers {u5, u6, u7, u8}. The preference and attrac-
ion of each user can be inferred from the interaction initiators
nd receivers, and they reveal distinctive user portraits. On the

ther hand, the directionality and the intrinsic semantics of user

5

Fig. 5. A toy example of the directional user interaction graph for a single user.

interactions result in the properties of heterophily [30], asym-
metry [31], and non-transitivity [32] of user interaction graphs.
The property of heterophily declares that the connected nodes
in the graph are likely from different classes or have dissimilar
features. For nodes a, b and c in a graph, the property of asym-
etry declares that the proximity between (a, b) is not equal to

that of (b, a), and the property of non-transitivity declares that
a → c may not hold when a → b and b → c are satisfied.
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In our scenario of RRSs, it is also intuitive that gamers often
prefer teammates with others whose competitive styles are com-
plementary to themselves (heterophily), their interactions could
not be always reciprocated (asymmetry), and their directional
preferences cannot transit from users to users (non-transitivity).

According to these analyses, we argue that the performance
of GNNs for reciprocal tasks will be limited if they are directly
employed on the user interaction graph without specific designs.
First, some valuable fine-grained information of user attraction
and preference implied from the edge directions are discarded
and mixed up if they are regarded as bi-directed edges by GNNs.
Second, GNNs play the role of low-pass filtering and smooth
the node features over graph topological structures, where the
commonality of node features are mainly retained and their dif-
ference are ignored [33,34]. Hence GNNs are effective when edges
encode similarity but fail to explore the user interaction graph
when edges encode heterophily and asymmetry. Third, the high-
order information is empirically considered with multi-layer GNN
architectures to achieve the best performance [27,35]. However,
the high-order information may be noisy and entangled when
considering the directions of interactions in the user interaction
graph due to its non-transitivity. To summarize, the properties
of heterophily, asymmetry, and non-transitivity of the user inter-
action graph render the task of reciprocal recommendation with
GNNs challenging.

5. Methodology (RQ5)

In this section, we introduce the details of the proposed
GraphRR, which is illustrated in Fig. 6.

5.1. The ego graph augmentation

In view of the limitations of traditional GNNs for reciprocal
tasks, we propose the mechanism of the ego graph augmentation.
For each user, three L-hop ego graphs are augmented for L-layer
NNs, which encode the user preference, attraction and similarity
espectively.

.1.1. Reciprocity-based ego graphs
The reciprocity-based augmentation generates two ego graphs

or each user, i.e. the preference ego graph and the attraction ego
raph. Since directional user interaction graphs cannot be simply

pplied in GNNs due to the properties of asymmetry, heterophily

6

and non-transitivity, we consider how to convert the directional
interactions into symmetric, homophily-encoding and transitive
ones while preserving their useful semantics. As shown in the
left graph on Fig. 7, u1 send Friend Requests to u2 and u3, we
ould find that u2 and u3 indeed share a new personalized relation
amed Co-Requested by u1. Moreover, given an ego node u1,
his new relation satisfies the property of symmetry, homophily
nd transitivity. Hence we integrate this new relation into the
onstructed ego graph.
Each constructed ego graph consists of two components: the

eed interactions and the kNN co-interactions. The former speci-
ies the first-order neighbors and the latter specifies the higher-
rder neighbors to explore the kNN co-interaction semantics
etween users. An example of the reciprocity-based augmenta-
ion is shown in Fig. 7. For simplicity, we only introduce the
onstruction of the preference ego graph, and the attraction ego
raph can be obtained in a similar way. We now elaborate on the
onstruction of the two components of the preference ego graph
s below.
The seed interactions. The seed interactions of user u’s pref-

rence ego graph is defined as his direct out-going interactions.
ormally, given user u and the interaction type t , we firstly obtain
is first-order neighbors as

seed
u,t = {v||u

t
→ v}. (3)

Then the seed interactions are constructed as

Eseed
u,t = {(u, v)||v ∈ N seed

u,t }. (4)

The kNN co-interactions. The kNN co-interactions are gen-
erated to explore the co-interaction semantics between users,
which act as the higher-order neighbors of the constructed ego
graphs. Given the seed nodes N seed

u,t , we firstly apply the k-nearest
eighbor (kNN) algorithm within the node set to generate the
NN graph as
knn
u,t = k-nearest({(src, dst)||src ∈ N seed

u,t , dst ∈ N seed
u,t }), (5)

where src is one of the k-nearest neighbors of dst , and the
kNN distance between users is also recorded as edge features in
Eknn
u,t . Then the co-interaction edges are iteratively expanded from

neighbors of the previous order based on the kNN connectivity:

E (l)
u,t = {(src, dst)||(src, dst) ∈ Eknn

u,t , dst ∈ N (l−1)
u,t }, l ≥ 2, (6)

(l) (l)
Nu,t = {src||(src, dst) ∈ Eu,t}, l ≥ 2. (7)
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Fig. 7. An example of the reciprocity-based augmentation for the 2-hop preference ego graph. The left part is the original user interaction graph where only the
out-going edges are drawn for simplicity. The right part is the augmented preference ego graph, which consists of the seed interactions (the dark circle) and the
kNN co-interactions (the light circle).
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For the case of l = 1,

E (1)
u,t = Eseed

u,t , (8)

N (1)
u,t = N seed

u,t . (9)

There are two reasons to explain why we use kNN to construct
the co-interactions. First, a user may have many interactions
with other users, resulting in exponentially increasing neighbor-
hood expansion and computational complexity if we do not limit
the neighbor size. Second, though sampling techniques can be
a compromised solution to the computation burden, it ignores
the significant information contained in the user features dur-
ing sampling, which evidently reveals users’ engagement in the
game, e.g., users’ frequency of being online. The kNN algorithm
is important to achieve the balance between effectiveness and
efficiency. In terms of the distance metrics, there are multiple
choices including Euclidean distance, cosine similarity, and heat
kernel distance. Here the Euclidean distance is chosen since the
user’s attributes usually possess explicit meanings and we are
more concerned about their numerical values rather than their
vectorial direction.

5.1.2. Similarity-based ego graphs
Since GNNs could act as the role of low-pass filtering, we still

leverage GNNs to extract the common components of users based
on the topological structures of user interaction graphs. Hence,
we construct the similarity-based ego graphs by neglecting the
directions of interactions and expanding the L-hop neighborhood
for each ego user. The aggregation on similarity ego graphs can
also be viewed as directly applying GNNs to the original user
interaction graph.

5.2. Multi-interaction GNN

In the proposed GraphRR, three augmented ego graphs for user
u are generated denoted as Gpref (u), Gattr (u) and Gsim(u), where
three independent Multi-Interaction GNN (MIGNN) modules are
applied to obtain user representations in the aspect of prefer-
ence, attraction and similarity, respectively. Here we describe
the MIGNN by introducing the details of message passing in
the augmented ego graphs. A single MIGNN-layer contains two
types of aggregation, i.e., the user interaction aggregation and
the multiplex interaction aggregation. The former is to aggre-
gate neighbors of the same interaction type and the latter is to

combine the representations of different types.

7

5.2.1. Feature initialization
Before the message passing, we transform the initial nodes

feature into the hidden representations as

H = tanh(XW0). (10)

Here X is the original attribute matrix of users and W0 ∈ RF×d is
he linear transformation matrix, where F is the number of user
ttributes and d is the dimension of hidden representation.

.2.2. User interaction aggregation
Given the ego graph G(u) with the ego user u and the inter-

ction type t , we could obtain its l-order edge sets E (l)
u,t and the

-order neighbor sets N (l)
u,t . The purpose of user interaction aggre-

ation is to obtain the user representation under t interaction by
teratively aggregating the features of the l-order neighbors (the
ource users) into (l− 1)-order neighbors (the destination users).
As each user may interact with many users, the contribution

f different interactions cannot be specified artificially and should
e learned by the model itself. As a result, we use the attention
echanism into consideration to learn each neighbor’s coefficient

n each layer, namely α(src,dst),t . With the learned coefficients
ormalized by softmax function across all neighbors, the person-
lized importance of src to user dst is automatically measured.
hen dst ’s representation is updated by the attentive propagation
f neighbor features. Formally, the updated representation of dst
n view of interaction t can be calculated as

dst,t =

∑
(src,dst)∈E(l)

u,t

α(src,dst),tW(l)hsrc, (11)

here α(src,dst),t is the computed importance score of the inter-
ction (src, dst), W(l) is the transformation matrix for the l-order
eighbors and hsrc denotes the corresponding row of src in the

user representation matrix H.
Since the constructed ego graphs contain two different com-

ponents, i.e. the seed interactions and the kNN co-interactions,
we apply different operations to obtain the attention coefficients.

The attention on kNN co-interactions. In the calculation of
α(src,dst),t for the kNN co-interactions, we takes the source, desti-
nation and ego user into consideration, i.e. src , dst and u respec-
tively. Concretely, the features of the source node and destination

node of each edge are concatenated with the ego nodes in the ego
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raph, and fed into a fully connection layer followed by a non-
inear activation. Then the importance score between the edge
src, dst) is obtained as

(src,dst),t = a(l)t
⊤

[W(l)hu||W(l)hsrc ||W(l)hdst ], (12)

here a(l)t ∈ R3d. Note that the features of ego user u are utilized
n the calculation of each edge attention. It is because the kNN
o-interactions are personalized with regard to user u, hence it is
eneficial to consider u’s features when assessing the importance
f co-interactions. With the importance scores computed, we
ultiply them with the kNN distance of each co-interaction, and
pply the softmax function across the incoming edges of dst to
btain the final coefficients, i.e.,

(src,dst),t =
exp

(
σ

(
s(src,dst),t · k(src,dst),t

))∑
(j,dst)∈E(l)

u,t
exp

(
σ

(
s(j,dst),t · k(j,dst),t

)) , (13)

where k(src,dst),t is the kNN distance of the co-interaction (src, dst),
hich is recorded as edge features in the construction of ego
raphs.
The attention on seed interactions. The calculation of α(src,dst),

for the seed interactions is the simplified version of that on the
co-interactions. There are only two users in the computation of
attention, as dst user is the ego user on the seed interactions.
Besides, the kNN distance is also removed as there is no such
edge features for the seed interactions. The formulas are stated
as

α(src,u),t =

exp
(
σ

(
a(1)t

⊤

[W(1)hsrc ||W(1)hu]

))
∑

(j,u)∈E(1)
u,t

exp
(
σ

(
a(1)t

⊤

[W(1)hj||W(1)hu]

)) , (14)

here a(1)t ∈ R2d is the importance vector in the first layer.

5.2.3. Multiplex interaction aggregation
Given the multiplex ego graph G(u), we could obtain T

interaction-specific embeddings for the destination nodes, de-
noted as {hdst,t |t ∈ TE}. Generally, each user has conducted
multiple types of interactions and it is intuitive that the user
embeddings learned from various behaviors reflect different as-
pects of users’ portraits. In order to measure the contributions
of different interaction types for each user, another attention
mechanism is applied. The interaction-specific embeddings are
firstly transformed by a weight matrix, then the dot product
between the trainable vector qA and the transformed embeddings
can be interpreted as the importance of interaction types, i.e.,

edst,t = q⊤

A tanh(Ahdst,t + b), (15)

dst,t =
exp(edst,t )∑
j∈TE

exp(edst,j)
, (16)

here A ∈ Rd×d and b ∈ Rd are the learnable parameters, with
⊤

A ∈ Rd being the parameterized importance vector.
Once αdst,t are computed for user u and all its interaction

ypes, we can obtain the comprehensive representation by fusing
he interaction-specific embeddings as

dst =

∑
t∈TE

αdst,thdst,t . (17)

.2.4. Aggregation to the ego nodes
Now we have introduced basic MIGNN-layer, which perform

he aggregation from the l-order neighbors to the (l − 1)-order
eighbors. It is noted that by iteratively replacing the (l) with
l − 1) from Eq. (11)–(17), the ego node u could receive the
ggregation information up to its l-order neighbors, denoted as
(l).
u

8

To explore the information in the ego graph from different
rders, we perform the procedures of message aggregation for its
, 2, . . . , L-order neighbors to obtain multiple representations for
he ego node u, namely {h(1)

u ,h(2)
u , . . . ,h(L)

u }. As these represen-
ations emphasize the connectivity of different orders, the final
mbeddings are generated as

∗

u =

L∑
l=0

h(l)
u . (18)

n our experiments, we do not design special components for the
ayer combinations, as the uniform weighting of different order
nformation leads to a good performance in general [28].

To summarize, the MIGNN module takes the multiplex ego
raph as input and generates user embeddings for each ego
ser by attentively aggregating the features from neighbors of
ifferent orders.

.3. Reciprocal information fusion

With three ego graphs augmented, we apply three indepen-
ent MIGNN modules on these ego graphs as follows:
∗

u,sim = MIGNNsim(Gsim, xu). (19)

∗

u,pref = MIGNNpref (Gpref , xu), (20)

∗

u,attr = MIGNNattr (Gattr , xu), (21)

As is analyzed in Section 4.2, the learned embeddings e∗

u,sim,
∗

u,pref and e∗
u,attr and suggest the information of user’s similarity,

reference and attraction, respectively.
The final step is to integrate the user embeddings learned from

istinct aspects into the single comprehensive embeddings. We
ropose two variants as GraphRRattn, and GraphRRMLP , to examine
hese two candidate fusion functions:

• Attention mechanism: a shared transformation is applied to
calculate the personalized importance of embeddings from
different aspects, and the ultimate embedding is obtained
by the weighted sum:[

αsim
αpref
αattr

]⊤

= softmax(qf tanh(Wf

⎡⎣e∗

u,sim
e∗

u,pref
e∗
u,attr

⎤⎦⊤

+ bf )) (22)

e∗

u = αsime∗

u,sim + αpref e∗

u,pref + αattre∗

u,attr , (23)

whereWf ∈ Rd×d, bf ∈ Rd×1 and qf ∈ R1×d are the trainable
parameters.

• Multi-Layer Perceptron (MLP): a two-layer MLP is applied
for reciprocal information fusion.

e∗

u = MLP([e∗

u,sim||e∗

u,pref ||e
∗

u,attr ]). (24)

.4. Prediction

Given the ultimate embeddings generated from the reciprocal
usion, we estimate the reciprocity score between two users by
nner product:

ˆu,v = e∗⊤

u ev. (25)

To train the model in an end-to-end manner, we optimize the
arameters in the model by minimizing the cross entropy via
ack propagation. The loss function is formulated as follows:

= −

∑
(u,v)∈Ω

log σ (ŷu,v) −

∑
(u′,v′)∈Ω−

log(1 − σ (ŷu′,v′ )), (26)

here σ (·) is the sigmoid function, Ω denotes the user pairs that
ulfill reciprocity and Ω− denotes the pairs that only indicate
nilateral preferences or no subsequent interactions.
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Table 2
Descriptive statistics of two user interaction graphs.
Graph Type of interactions # Interactions # Nodes # Features

KO

Approve Friend Request 0.97M

0.43M 47
Accept Team Invitation 2.31M
Game Like 6.31M
Send Gift 0.33M
Send Message 0.51M

T&J
Approve Friend Request 0.37M

0.31M 73Accept Team Invitation 0.41M
Send Message 0.49M

5.5. Training and efficiency

We train GraphRR in the mini-batch setting for the large-
cale datasets using multiple GPUs. The user features and the
istorical interaction edges are placed in CPU memory. The mini-
atch contains the user pairs which have or do not have the
eciprocity behaviors. We sample their interactions into the ego
raphs which are loaded the graphs into GPU during training.
or the ego graph augmentation, it can be implemented within
he process of neighborhood sampling, and the kNN algorithm
s preprocessed for each user and serialized into disks. Thus the
er-batch space and time complexity of augmentation are fixed
t O(

∏L
i=1 Si), where Si is the sampling size of the ith layer.

. Experiments

.1. Experiment settings

.1.1. User interaction graphs
In the experiments, we collect two user interaction graphs

rom two mobile games of various genres from NetEase Games,2
hich is one of the leading providers of game service to world-
ide users. The multiplex edges of the graphs are built by their
istorical interactions. The attributes of nodes in each graph
ontain users’ basic personal information, social activities and
ompetitive performances from their historical records. The de-
criptive statistics of these two multiplex graphs are shown in
able 2 with more details of the graphs as follows:

• KO: The user interaction graph is collected from Knives Out,3
a popular first-person shooting game. 47 user attributes
are extracted and five types of user interactions occurring
between April 12th, 2020 and May 11th, 2020 are recorded.

• T&J: This dataset is collected from Tom and Jerry: Chase,4
a popular casual battle game. Similarly, 73 user attributes
are extracted and the graph is constructed by three user
interactions occurring between June 10th, 2020 and June
16th, 2020.

Besides, we show some examples of the user features used in
he user interaction graph of Knives Out in Table 3. It is observed
hat the user features can be divided into four categories, which
eveal user basic information, competitive ability, total activity
nd social engagement, respectively.

.1.2. Datasets
There are four datasets in the experiments, which are collected

ollowing the period of interaction graph and shown in Table 4.
hese datasets describe whether users send Friend Request and
eam Invitation to other users from the recommendation list

2 https://www.neteasegames.com
3 https://www.knivesout-en.com
4 https://www.tomandjerrychaseasia.com
9

after each game. The positive and the negative samples are both
generated by users’ explicit interactions.

As is shown in Fig. 2, the user interactions have an extremely
skewed distribution in our scenario, i.e., around 1% active users
contribute around 99% labels (interactions). If we directly use all
labels for training, the labels of active users will dominate the
overall optimization of the model. However, our RRS needs to
provide the recommendation results not only for active users but
also for the large proportion of long-tail inactive users. Hence,
we apply the strategy of downsampling on the samples of active
users to enforce the model to concentrate on inactive users.
Specifically, we only keep npos positive labels and nneg negative
labels per user in each dataset, where npos and nneg are the median
size of positive and negative labels of all users.

6.1.3. Baselines
We compare GraphRR with some representative methods, in-

cluding conventional RS models widely used in the industry (MLP,
XGBoost), convectional RRS model (LFRR), homogeneous RS mod-
els (GAT, GraphSAGE, NGCF, LightGCN), and multiplex RS models
(RGCN, HGT, MF-BPR and MBGCN):
Conventional Models:

• MLP + DW [36]: Multi-Layer Perceptron is a basic deep
neural network to capture the complex feature dependen-
cies. For fair comparisons with the graph-based methods,
DeepWalk is also adopted to generate pre-trained node em-
beddings as the additional inputs for the MLP.

• XGBoost + DW [37]: XGBoost is a scalable gradient boost-
ing framework and widely used in the industry. Similarly,
DeepWalk is adopted as the additional feature extractor for
fairness.

• LFRR + DW [10]: LFRR is a state-of-the-art method for re-
ciprocal recommendation. It learns two latent factor models
to calculate two preference scores, and obtain the final pre-
dicted score by combining them with aggregation operators,
e.g. arithmetic mean. As it is not designed for capturing
high-order user interactions, DeepWalk is adopted as the
additional feature extractor.

omogeneous Models:

• GAT [35]: It is a graph neural network method that con-
siders the different contributions of neighbors by attention
mechanism.

• GraphSAGE [38]: It is a graph neural network method for
large-scale graphs and learns node representations by neigh-
borhood sampling and feature aggregation.

• NGCF [11]: It is a state-of-the-art method in recommender
systems that encodes the collaborative signal into node rep-
resentations by modeling high-order connectivity in the
user–item interaction graph.

• LightGCN [28]: It is a state-of-the-art method in recom-
mender systems that simplifies the design of GCN by remov-
ing the feature transformation and nonlinear activation.

Multiplex Models:

• RGCN [39]: It is a relational graph neural network method
that can be applied on the multiplex graph. It introduces
interaction-specific transformations and combines the em-
beddings from different relations by the summing operator.

• HGT [29]: It is a graph representation method designed for
web-scale heterogeneous graph. It introduces the node- and
edge-type dependent parameters to calculate the heteroge-
neous attention over each edge.

https://www.neteasegames.com
https://www.knivesout-en.com
https://www.tomandjerrychaseasia.com
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Table 3
The examples of user features from Knives Out.
Feature categories Feature examples Explanations

Basic information age The user’s age

region The user’s region

Competitive ability avg_single_kill The user’s average kills per game in the past periods

avg_single_life_time The user’s average survival time per game in the past periods

Total activity online_time The user’s total online time in the past periods

activity_days The number of days the user is active in the past periods

Social engagement mic_cnt The number of games where the gamers has turned on the
microphone to communicate in the past periods

total_send_like The number of Likes sent by the user in the past periods
M

MLP
Table 4
Descriptive statistics of the four datasets.
Datasets KO-Invitation KO-Request T&J-Invitation T&J-Request

Period 2 weeks 2 weeks 3 days 3 days
# users 0.32M 0.32M 0.19M 0.19M
# pos 1.09M 0.27M 0.63M 0.21M
# neg 0.75M 0.51M 4.01M 0.57M

• MF-BPR [22]: It is one of the popular models that utilize
multi-behavior interaction data in recommender systems. It
adapts the sampling strategy and applies pairwise loss to
discriminate the strength of user behaviors.

• MBGCN [24]: It is a state-of-the-art GNN-based model for
multi-behavior recommendation. It leverages the graph con-
volutional network to perform interaction-aware embed-
ding propagation.

The proposed method and the baselines are implemented
ased on PyTorch and DGL [40]. For DW, GAT, GraphSAGE, NGCF,
nd LightGCN, all types of interactions are treated equally as they
annot deal with multiplex interactions, and they also neglect the
irections of the user interaction graph. For GNN-based solutions,
he depth of graph neural networks is set as 3. The dimensions
f user representations and hidden layer are both 128, with the
umber of attention heads being 4. During training, Adam [41] is
mployed as the optimizer and the learning rate is set as 0.001.

.2. Experimental results

.2.1. Friend recommendation
To evaluate the performance of the proposed GraphRR in the

ask of friend recommendation, we conduct experiments in four
atasets. The experiments are measured by two popular ranking
etrics, i.e., Normalized Discounted Cumulative Gain (NDCG) and
ean Reciprocal Rank (MRR).
Specifically, for user u, the calculation of NDCG is formulated

s

CGp =

p∑
i

2reli − 1
log2(i + 1)

, (27)

DCGp =
DCGp

IDCGp
, (28)

here i represents the ith recommendation candidate user for
. The total number of the candidates is denoted as p, and reli
epresents the relevance score between user i and u. Given user u,
raphRR ranks u’s candidate users based on their relevance scores
ith u. Then DCG score is calculated to evaluate the quality of
anking of all candidates, and the Eq. (28) normalizes DCG score
y the Ideal DCG (IDCG) which is the DCG score of ground truth

anking.

10
In terms of MRR, for user u, its MRR score is calculated as

RR =
1

ranki
, (29)

where ranki represent the ranking of first positive candidate user
for u.

The performance of GraphRR is illustrated in Table 5, where
the relative improvements regarding the best baseline are
recorded in the last row. We summarize some major observations
as follows:

• Comparing LFRR + DW with MLP + DW and XGB + DW, we
could find that considering reciprocity can improve mod-
els’ performance for the recommendation. However, these
methods perform worse than GNN-based methods as they
could only separately model user attributes and interac-
tions. It suggests the effectiveness of GNNs in integrating
attributes and structures into embeddings.

• Methods that are aware of multiplexity, i.e. RGCN, HGT
and GraphRR, can achieve better performance than those
designed for homogeneous graphs, which further indicates
the necessity of distinguishing various interactions in the
multiplex user interaction graphs.

• Methods that are designed for the multi-behavior recom-
mendation, i.e. MBGCN, and MF-BPR, can achieve superior
performance than single-behavior methods such as Light-
GCN and NGCF. Besides, MBGCN which also uses the GNN
architecture is the best multi-behavior baseline and has
comparable results with the multiplex GNN-based methods
(RGCN and HGT). This comparison verifies the effective-
ness of GNN for capturing diverse user semantics for the
multi-behavior recommendation.

• Our proposed method GraphRR consistently outperforms
baselines in all metrics. In contrast to the multiplex methods
HGT, RGCN, MF-BPR and MBGCN that ignore the unidirec-
tionality of interactions, GraphRR can further improve the
recommendation results by the ego graph augmentation to
consider the reciprocity patterns between users.

• GraphRRMLP performs generally better than GraphRRattn. The
reciprocal information fusing of GraphRRattn is actually an
additive operation with trainable coefficients, while
GraphRRMLP could explore the non-linear transformation
and fully fuse the representations. The superiority of GraphRR
verifies there might exist some complex, non-linear de-
pendencies between users’ representations on similarity,
preference and attraction.

• The improvement of GraphRR on the T&J graph is more
significant than that on the KO graph. This may be caused by
the distinction between these two games’ competitive con-
tents. In Tom and Jerry: Chase, a gamer has a relatively fixed
role, and the pattern of cooperation between teammates
is also simpler, whereas Knives Out is more competitive
and users’ gaming styles are more uncertain, rendering the
task of reciprocal recommendation on the KO graph more
challenging.
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Table 5
The ranking performance of different methods for the recommendation task with the best results in each datasets marked in bold and the best
baseline underlined.
Datasets KO-Invitation KO-Request T&J-Invitation T&J-Request

Metric NDCG MRR NDCG MRR NDCG MRR NDCG MRR

MLP + DW 0.5770 0.7705 0.6943 0.8225 0.5382 0.7534 0.7421 0.8734
XGB + DW 0.5931 0.7631 0.6938 0.8326 0.5676 0.7957 0.7294 0.8439
LFRR + DW 0.6026 0.7695 0.7081 0.8372 0.6148 0.8329 0.7508 0.8856
GAT 0.6089 0.7521 0.7047 0.8281 0.5563 0.7899 0.7635 0.9251
GraphSAGE 0.6056 0.7699 0.7151 0.8398 0.5679 0.7960 0.7870 0.9346
NGCF 0.6034 0.7709 0.7128 0.8551 0.6008 0.8179 0.7843 0.9367
LightGCN 0.6252 0.8058 0.7041 0.8366 0.6171 0.8068 0.7747 0.9304
RGCN 0.6330 0.7973 0.7314 0.8502 0.6503 0.8459 0.7877 0.9477
HGT 0.6326 0.7849 0.7403 0.8686 0.6261 0.8244 0.8010 0.9346
MF-BPR 0.6134 0.7701 0.7121 0.8234 0.6029 0.7992 0.7495 0.8802
MBGCN 0.6321 0.8013 0.7425 0.8637 0.6654 0.8493 0.7885 0.9424

GraphRRattn 0.6423 0.8029 0.7533 0.8936 0.6931 0.9045 0.8124 0.9431
GraphRRMLP 0.6483 0.8187 0.7542 0.8907 0.7255 0.9266 0.8311 0.9582
Impr% 2.42% 1.60% 1.58% 2.88% 9.03% 9.10% 3.76% 1.11%
p-value 2.20E−3 1.01E−3 4.29E−3 1.71E−4 2.17E−6 4.58E−8 7.02E−6 1.65E−2
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To further compare the statistical robustness of the improve-
ent of the proposed GraphRR over baseline methods, we cal-
ulate confidence intervals with the ten runs and report the
-values of a paired t-test between GraphRRMLP and one of the
est baseline MBGCN. As shown in Table 5, the improvements of
raphRR over MBGCN are statistically significant with the paired
-test at p < 0.05 on all evaluation metrics over all datasets.
verall, the experimental results demonstrate the effectiveness
f GraphRR.

.2.2. Reciprocity evaluation
The reciprocity between users is evaluated by two labels gen-

rated from the existing users’ responses to the preference ini-
iated by others, i.e. Co-gaming and Friending, which indicates
hether users Accept Team Invitation or Approve Friend Request
ith the recommended users, respectively. We choose these two

abels for reciprocity evaluation as they are important and chal-
enging for online games. For each user, the positive and negative
abels are collected from their responses to the recommendation
esults.

Group AUC (GAUC) [42] is adopted as the metric, which mea-
ures the goodness of intra-user ranking and is shown to be
ore relevant to online performance in the recommender system.
imilar to [42], we introduce RelaImpr to measure the relative
UC improvement over the models. Since a random strategy
resent an AUC of 0.5, RelaImpr is defined as

elaImpr =

(
AUC(measured model) − 0.5

AUC(base model) − 0.5
− 1

)
∗ 100%. (30)

The results of reciprocity evaluation are shown in Table 6. We
lso report the p-values of a paired t-test between GraphRRMLP
nd one of the best baseline RGCN. We observe consistently high
ains for the two variants of GraphRR on both datasets that re-
lect users’ reciprocity, where the improvements are statistically
ignificant with a paired t-test at p < 0.05. These results demon-
trate the effectiveness of the proposed ego graph augmentation
o capture users’ reciprocity patterns.

.3. Model analysis

.3.1. Ablation study
To gain insights into GraphRR’s architecture, we study the

mpact of its significant components. Concretely, we compare
raphRR with its three variants: GraphRR−aug , GraphRR−co and
raphRR , which are defined as follows:
−multi

11
• GraphRR−aug : The proposed ego graph augmentation is re-
moved. This variant only utilizes the similarity-based ego
graph to learn user representations, which neglects the di-
rections of the original user interactions.

• GraphRR−co: The kNN co-interaction graph in the reciprocity-
based ego graph augmentation is removed, where the pref-
erence and attraction ego graphs still exist but only have a
single hop neighborhood.

• GraphRR−multi: This variant ignores the multiplexity of the
user interaction graph, i.e., all types of interactions have the
same contribution to users’ representations.

The comparisons of GraphRR with the above three variants are
illustrated in Fig. 8. We can observe that missing any of the com-
ponents leads to performance degeneration of GraphRR. There are
some other specific conclusions:

• The improvements of GraphRR over GraphRR−aug suggests
a notable gain from the proposed ego graph augmentation,
which verifies GraphRR’s effectiveness to deal with user
interactions of preference and attraction.

• GraphRR−co is marginally better over GraphRR−aug , which
indicates that separately learning the attraction and pref-
erence components from the user interaction graph can
slightly contribute to the model. Meanwhile, the kNN co-
interaction graph plays a more crucial role in the ego graph
augmentation comparing GraphRR with GraphRR−co.

• The superiority of GraphRR over GraphRR−multi shows that
distinguishing multiplex user interactions makes notewor-
thy improvements, and confirms that the users’ multiplex
interactions are essential to estimate the reciprocity be-
tween users.

.3.2. Effect of the ego graph augmentation (RQ4)
To further verify the efficacy of the core component of the

roposed architecture, i.e. the ego graph augmentation, we facili-
ate the baseline methods with this mechanism and record the
elative improvement in Table 7. Specifically, we keep the ego
raph augmentation and the reciprocal information fusion, and
nly replace the MIGNN modules with the baseline methods.
The results demonstrate that the proposed ego graph aug-

entation generally brings about improvement on the baselines
o a varying extent. Concretely, the benefits of the ego graph
ugmentation on T&J graph are more significant compared to
hose on KO graph, which is consistent with the results in Ta-
le 5. We think this is caused by the fact that the reciprocity
attern between gamers is more evident in Tom and Jerry: Chase.
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Table 6
The experimental results on two reciprocity datasets.
Dataset KO-Invitation KO-Request T&J-Invitation T&J-Request

Reciprocity indicator Co-gaming Friending Co-gaming Friending

MLP+DW 0.5936 0.6489 0.5449 0.5597
XGB+DW 0.5920 0.6445 0.5581 0.5524
LFRR+DW 0.6068 0.6531 0.5629 0.5684
GAT 0.6020 0.6454 0.5608 0.5898
GraphSAGE 0.6133 0.6639 0.5789 0.6100
NGCF 0.5976 0.6527 0.6068 0.6139
LightGCN 0.6096 0.6646 0.5899 0.5949
RGCN 0.6248 0.6730 0.6555 0.6345
HGT 0.6179 0.6797 0.6239 0.6215
MF-BPR 0.5994 0.6207 0.5660 0.5893
MBGCN 0.6201 0.6753 0.6542 0.6259

GraphRRattn 0.6411 0.7186 0.6869 0.6530
GraphRRMLP 0.6403 0.7224 0.6946 0.6788
RelaImpr 13.06% 23.76% 25.11% 32.94%
p-value 1.53E−2 8.98E−7 7.45E−6 3.06E−7
Table 7
The performance of the baseline methods facilitated by the augmented ego graphs.
Datasets Methods Invitation Request

NDCG MRR NDCG MRR

KO

NGCFaug +3.51% +2.79% +2.43% −0.57%
LightGCNaug +1.28% +1.01% +3.03% +3.49%
RGCNaug +2.24% +2.18% +2.61% +2.38%
HGTaug +1.56% +1.94% +1.50% +1.92%

T&J

NGCFaug +4.45% +0.26% +0.05% +0.68%
LightGCNaug +4.77% +0.33% +1.28% +1.81%
RGCNaug +11.37% +8.46% +6.47% +2.18%
HGTaug +13.40% +10.49% +3.55% +0.95%
Table 8
The learned coefficients (mean values) for the multiplex interactions.
Interaction KO-Invitation KO-Request T&J-Invitation T&J-Request

Approve Friend Request 0.12 0.39 0.28 0.39
Accept Team Invitation 0.44 0.13 0.43 0.31
Game Like 0.21 0.28 \ \
Send Gift 0.10 0.09 \ \
Send Message 0.13 0.11 0.29 0.30
a
R
i
c
a
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m
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t
s

Fig. 8. The performances of GraphRR and its three variants.

Meanwhile, we also observe that the multiplexity-aware methods
present more improvements than the homogeneous methods on
T&J graph. It suggests that the joint consideration of multiplexity
and reciprocity significantly boosts the model’s performance.
12
6.3.3. The analysis of the multiplexity attention (RQ2)
In this section, we investigate the contribution of the mul-

tiplex interactions in the graph. We extract the attention co-
efficients and record them in Table 8. It can be observed that
Accept Team Invitation and Approve Friend Request accounts for
high proportion of contributions to the labels Invitation and
equest respectively, which is consistent with the observation
n reality that the most relevant interactions provide a primary
ontribution to predictions while other interactions only play the
uxiliary roles.

.3.4. Hyper-parameter studies
To understand how hyper-parameters influence the perfor-

ance of the proposed GraphRR, we conduct the sensitivity stud-
es on several important hyper-parameters including the number
f co-interactions k in the ego graph augmentation, the number
f GNN layers, and the dimension of the hidden layer. We record
he performance of GraphRRMLP in Fig. 9. The observations are
ummarized as follows:

• The number of co-interactions k. In this experiment, the
number of co-interactions k is searched from 0 to 30. We
can observe that with the increase of k, the performance
raise first and then start to drop slightly. It is reasonable
as k controls the homophily of the augmented ego graph.
When k is small, there are no enough neighbors in the
ego-graph, thus the augmentation has little impact on the
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Fig. 9. The sensitivity of the hyper-parameters in GraphRR.
model. When k is large, the user’s ego graph may contain
the noisy interactions with heterophily, thus reducing the
performance of the proposed MIGNN.

• The number of GNN layers. By stacking the proposed MIGNN
layers, GraphRR could capture the complex high-order user
semantics. As is observed in Fig. 9, we can notice that the 2-
layer or 3-layer GraphRR performs significantly better than
the 1-layer GraphRR, which suggests the positive effect of
high-order user interactions. Meanwhile, the performance
of the 4-layer GraphRR starts to deteriorate. Generally, three
GNN layers are sufficient to capture the high-order sig-
nals, while more layers might introduce noise and lead to
over-smoothing [43].

• The dimension of the hidden layer. Here we investigate
the effect of the dimension of the hidden layer. Based on
the results, we can see that the performances of GraphRR
generally increase with the hidden dimension due to the
larger representation feature space. However, large hidden
dimension do not necessarily result in improvement, and
GraphRR achieves the best performance when the dimen-
sion is set as 128. After that, it begins to degenerate. The
reason is that GraphRR requires a suitable dimension to
encode the user interactions, and a larger dimension brings
a higher risk of overfitting.

7. Conclusion and future work

In this paper, we propose a multiplex Graph based Reciprocal
riend Recommender system (GraphRR), which exploits the mul-
iplex user interactions by graph neural networks in reciprocal
ecommendation scenarios.

GraphRR fully explores the reciprocity patterns between users
y the reciprocity-based ego-graph augmentation, and captures
sers’ rich behavioral semantics by attentive multiplex graph
eural networks. Experiments on the datasets from two online
ames demonstrate the effectiveness of GraphRR and the pro-
osed ego-graph augmentation.
For future work, we believe that the GNN-based solutions are

ne of the promising research directions for reciprocal recom-
ender systems, as they have great capacities to capture the
ultiplex high-order relations between users. Hence it remains a

hallenge to design a suitable GNN architecture for recommender

13
systems. Besides, as the consideration of reciprocity can signifi-
cantly improve the model’s performance in the reciprocal recom-
mendation, the future exploration of the reciprocity patterns can
also go beyond the techniques of graph augmentation.

CRediT authorship contribution statement

Yaomin Chang: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation; Writing – original draft,
Writing – review & editing, Visualization. Lin Shu: Conceptualiza-
tion, Methodology, Writing – original draft. Erxin Du: Methodol-
ogy, Software, Validation, Writing – original draft. Chuan Chen:
Conceptualization, Methodology, Writing – review & editing, Su-
pervision. Ziyang Zhang: Conceptualization, Methodology, Writ-
ing – review & editing. Zibin Zheng: Resources, Project admin-
istration. Yuzhao Huang: Validation, Writing – review & editing.
Xingxing Xing: Data curation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The research is supported by the National Natural Science
Foundation of China 62176269 62032025, the Guangdong Basic
and Applied Basic Research Foundation, China 2019A1515011043,
2018B030312002.

References

[1] W. Chen, P. Huang, J. Xu, X. Guo, C. Guo, F. Sun, C. Li, A. Pfadler, H. Zhao,
B. Zhao, POG: personalized outfit generation for fashion recommendation
at Alibaba iFashion, in: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 2662–2670.

[2] L. Chen, Y. Liu, X. He, L. Gao, Z. Zheng, Matching user with item set:
Collaborative bundle recommendation with deep attention network., in:
IJCAI, 2019, pp. 2095–2101.

[3] R. Ying, R. He, K. Chen, P. Eksombatchai, W.L. Hamilton, J. Leskovec,
Graph convolutional neural networks for web-scale recommender systems,
in: Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2018, pp. 974–983.

http://refhub.elsevier.com/S0950-7051(22)00590-1/sb1
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb1
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb1
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb1
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb1
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb1
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb1
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb2
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb2
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb2
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb2
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb2
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb3
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb3
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb3
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb3
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb3
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb3
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb3


Y. Chang, L. Shu, E. Du et al. Knowledge-Based Systems 251 (2022) 109187
[4] P. Covington, J. Adams, E. Sargin, Deep neural networks for youtube recom-
mendations, in: Proceedings of the 10th ACM Conference on Recommender
Systems, 2016, pp. 191–198.

[5] J. Neve, I. Palomares, Hybrid reciprocal recommender systems: Integrat-
ing item-to-user principles in reciprocal recommendation, in: Companion
Proceedings of the Web Conference 2020, 2020, pp. 848–853.

[6] L. Pizzato, T. Rej, T. Chung, I. Koprinska, J. Kay, RECON: a reciprocal recom-
mender for online dating, in: Proceedings of the Fourth ACM Conference
on Recommender Systems, 2010, pp. 207–214.

[7] L. Li, T. Li, MEET: a generalized framework for reciprocal recommender
systems, in: Proceedings of the 21st ACM International Conference on
Information and Knowledge Management, 2012, pp. 35–44.

[8] P. Xia, B. Liu, Y. Sun, C. Chen, Reciprocal recommendation system for online
dating, in: 2015 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, ASONAM, IEEE, 2015, pp. 234–241.

[9] A. Kleinerman, A. Rosenfeld, F. Ricci, S. Kraus, Optimally balancing receiver
and recommended users’ importance in reciprocal recommender systems,
in: Proceedings of the 12th ACM Conference on Recommender Systems,
2018, pp. 131–139.

[10] J. Neve, I. Palomares, Latent factor models and aggregation operators
for collaborative filtering in reciprocal recommender systems, in: Pro-
ceedings of the 13th ACM Conference on Recommender Systems, 2019,
pp. 219–227.

[11] X. Wang, X. He, M. Wang, F. Feng, T.-S. Chua, Neural graph collaborative
filtering, in: Proceedings of the 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2019, pp. 165–174.

[12] F. Xie, Z. Cao, Y. Xu, L. Chen, Z. Zheng, Graph neural network and multi-
view learning based mobile application recommendation in heterogeneous
graphs, in: 2020 IEEE International Conference on Services Computing, SCC,
IEEE, 2020, pp. 100–107.

[13] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S.Y. Philip, A comprehensive
survey on graph neural networks, IEEE Trans. Neural Netw. Learn. Syst.
(2020).

[14] J. Zhao, Z. Zhou, Z. Guan, W. Zhao, W. Ning, G. Qiu, X. He, Intentgc:
a scalable graph convolution framework fusing heterogeneous informa-
tion for recommendation, in: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2019,
pp. 2347–2357.

[15] C. Yang, A. Pal, A. Zhai, N. Pancha, J. Han, C. Rosenberg, J. Leskovec,
MultiSage: Empowering GCN with contextualized multi-embeddings on
web-scale multipartite networks, in: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2020, pp.
2434–2443.

[16] P. Kumar, R.S. Thakur, Recommendation system techniques and related
issues: a survey, Int. J. Inf. Technol. 10 (4) (2018) 495–501.

[17] R. Chen, Q. Hua, Y.-S. Chang, B. Wang, L. Zhang, X. Kong, A survey
of collaborative filtering-based recommender systems: From traditional
methods to hybrid methods based on social networks, IEEE Access 6 (2018)
64301–64320.

[18] Y. Liu, C. Liang, X. He, J. Peng, Z. Zheng, J. Tang, Modelling high-order social
relations for item recommendation, IEEE Trans. Knowl. Data Eng. (2020).

[19] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural collaborative
filtering, in: Proceedings of the 26th International Conference on World
Wide Web, 2017, pp. 173–182.

[20] X. He, Z. He, J. Song, Z. Liu, Y.-G. Jiang, T.-S. Chua, Nais: Neural attentive
item similarity model for recommendation, IEEE Trans. Knowl. Data Eng.
30 (12) (2018) 2354–2366.

[21] Z. Zhao, Z. Cheng, L. Hong, E.H. Chi, Improving user topic interest pro-
files by behavior factorization, in: Proceedings of the 24th International
Conference on World Wide Web, 2015, pp. 1406–1416.

[22] B. Loni, R. Pagano, M. Larson, A. Hanjalic, BayesIan personalized ranking
with multi-channel user feedback, in: Proceedings of the 10th ACM
Conference on Recommender Systems, 2016, pp. 361–364.
14
[23] C. Gao, X. He, D. Gan, X. Chen, F. Feng, Y. Li, T.-S. Chua, D. Jin, Neu-
ral multi-task recommendation from multi-behavior data, in: 2019 IEEE
35th International Conference on Data Engineering, ICDE, IEEE, 2019, pp.
1554–1557.

[24] B. Jin, C. Gao, X. He, D. Jin, Y. Li, Multi-behavior recommendation with
graph convolutional networks, in: Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2020, pp. 659–668.

[25] I. Palomares, C. Porcel, L. Pizzato, I. Guy, E. Herrera-Viedma, Reciprocal
recommender systems: Analysis of state-of-art literature, challenges and
opportunities towards social recommendation, Inf. Fusion 69, 103–127.

[26] R.v.d. Berg, T.N. Kipf, M. Welling, Graph convolutional matrix completion,
2017, arXiv preprint arXiv:1706.02263.

[27] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolu-
tional networks, 2016, arXiv preprint arXiv:1609.02907.

[28] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying
and powering graph convolution network for recommendation, in: Pro-
ceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2020, pp. 639–648.

[29] Z. Hu, Y. Dong, K. Wang, Y. Sun, Heterogeneous graph transformer, in:
Proceedings of the Web Conference 2020, 2020, pp. 2704–2710.

[30] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, D. Koutra, Beyond homophily
in graph neural networks: Current limitations and effective designs, Adv.
Neural Inf. Process. Syst. 33 (2020).

[31] C. Zhou, Y. Liu, X. Liu, Z. Liu, J. Gao, Scalable graph embedding for
asymmetric proximity, Proceedings of the AAAI Conference on Artificial
Intelligence 31 (1) (2017).

[32] P. Cui, X. Wang, J. Pei, W. Zhu, A survey on network embedding, IEEE
Trans. Knowl. Data Eng. 31 (5) (2018) 833–852.

[33] H. Nt, T. Maehara, Revisiting graph neural networks: All we have is
low-pass filters, 2019, arXiv preprint arXiv:1905.09550.

[34] B. Xu, H. Shen, Q. Cao, K. Cen, X. Cheng, Graph convolutional networks
using heat kernel for semi-supervised learning, 2020, arXiv preprint arXiv:
2007.16002.

[35] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph
attention networks, 2017, arXiv preprint arXiv:1710.10903.

[36] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social
representations, in: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2014, pp. 701–710.

[37] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Pro-
ceedings of the 22nd Acm Sigkdd International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 785–794.

[38] W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on
large graphs, 2017, arXiv preprint arXiv:1706.02216.

[39] M. Schlichtkrull, T.N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, M. Welling,
Modeling relational data with graph convolutional networks, in: European
Semantic Web Conference, Springer, 2018, pp. 593–607.

[40] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu, Y.
Gai, T. Xiao, T. He, G. Karypis, J. Li, Z. Zhang, Deep graph library: A graph-
centric, highly-performant package for graph neural networks, 2019, arXiv
preprint arXiv:1909.01315.

[41] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

[42] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li, K. Gai,
Deep interest network for click-through rate prediction, in: Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2018, pp. 1059–1068.

[43] Q. Li, Z. Han, X.-M. Wu, Deeper insights into graph convolutional net-
works for semi-supervised learning, in: Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

http://refhub.elsevier.com/S0950-7051(22)00590-1/sb4
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb4
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb4
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb4
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb4
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb5
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb5
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb5
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb5
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb5
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb6
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb6
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb6
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb6
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb6
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb7
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb7
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb7
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb7
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb7
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb8
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb8
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb8
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb8
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb8
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb9
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb10
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb10
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb10
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb10
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb10
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb10
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb10
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb11
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb11
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb11
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb11
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb11
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb12
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb13
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb13
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb13
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb13
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb13
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb14
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb14
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb14
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb14
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb14
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb14
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb14
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb14
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb14
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb15
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb15
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb15
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb15
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb15
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb15
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb15
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb15
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb15
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb16
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb16
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb16
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb17
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb18
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb18
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb18
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb20
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb20
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb20
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb20
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb20
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb21
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb21
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb21
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb21
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb21
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb22
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb22
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb22
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb22
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb22
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb23
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb23
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb23
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb23
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb23
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb23
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb23
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb24
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb24
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb24
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb24
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb24
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb24
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb24
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb25
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb25
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb25
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb25
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb25
http://arxiv.org/abs/1706.02263
http://arxiv.org/abs/1609.02907
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb28
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb28
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb28
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb28
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb28
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb28
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb28
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb29
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb29
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb29
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb30
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb30
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb30
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb30
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb30
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb31
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb31
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb31
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb31
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb31
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb32
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb32
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb32
http://arxiv.org/abs/1905.09550
http://arxiv.org/abs/2007.16002
http://arxiv.org/abs/2007.16002
http://arxiv.org/abs/2007.16002
http://arxiv.org/abs/1710.10903
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb36
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb36
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb36
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb36
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb36
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb37
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb37
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb37
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb37
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb37
http://arxiv.org/abs/1706.02216
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb39
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb39
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb39
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb39
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb39
http://arxiv.org/abs/1909.01315
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb42
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb42
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb42
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb42
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb42
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb42
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb42
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb43
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb43
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb43
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb43
http://refhub.elsevier.com/S0950-7051(22)00590-1/sb43

	GraphRR: A multiplex Graph based Reciprocal friend Recommender system with applications on online gaming service
	Introduction
	Related work
	User–item recommendation
	Reciprocal recommendation
	Graph-based recommendation

	Problem formalization and notations
	Multiplex interaction graph
	Reciprocal friend recommendation

	Analyses
	The data analysis
	The analysis of GNNs for reciprocity (RQ4)

	Methodology (RQ5)
	The ego graph augmentation
	Reciprocity-based ego graphs
	Similarity-based ego graphs

	Multi-interaction GNN
	Feature initialization
	User interaction aggregation
	Multiplex interaction aggregation
	Aggregation to the ego nodes

	Reciprocal information fusion
	Prediction
	Training and efficiency

	Experiments
	Experiment settings
	User interaction graphs
	Datasets
	Baselines

	Experimental results
	Friend recommendation
	Reciprocity evaluation

	Model analysis
	Ablation study
	Effect of the ego graph augmentation (RQ4)
	The analysis of the multiplexity attention (RQ2)
	Hyper-parameter studies


	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


