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Abstract—Federated learning allows multiple participants to collaboratively train an efficient model without exposing data privacy.
However, this distributed machine learning training method is prone to attacks from Byzantine clients, which interfere with the training
of the global model by modifying the model or uploading the false gradient. In this paper, we propose a novel serverless federated
learning framework Committee Mechanism based Federated Learning (CMFL), which can ensure the robustness of the algorithm with
convergence guarantee. In CMFL, a committee system is set up to screen the uploaded local gradients. The committee system selects
the local gradients rated by the elected members for the aggregation procedure through the selection strategy, and replaces the
committee member through the election strategy. Based on the different considerations of model performance and defense, two
opposite selection strategies are designed for the sake of both accuracy and robustness. Extensive experiments illustrate that CMFL
achieves faster convergence and better accuracy than the typical Federated Learning, in the meanwhile obtaining better robustness
than the traditional Byzantine-tolerant algorithms, in the manner of a decentralized approach. In addition, we theoretically analyze and
prove the convergence of CMFL under different election and selection strategies, which coincides with the experimental results.
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✦

1 INTRODUCTION

NOWADAYS, data arise from a wide range of sources,
such as mobile devices, commercial, industrial and

medical activities. These data are further used for training
the Artificial Intelligence (AI) models applied in a variety
of fields. The conventional AI methods always require up-
loading the source data to a central server. However, this is
usually impractical due to data privacy or commercial com-
petition. Federated Learning (FL) [1], which allows multiple
devices to train a shared global model without uploading
the local source data to a central server, is an effective way
to solve the aforementioned problem. In FL settings, multi-
ple clients (also known as participants) are responsible for
model training and uploading the local gradients, while the
central server is responsible for the model aggregation. A
single round of FL mainly follows the following four steps:
(1) the multiple clients download a global model from the
server, and train their local models on their local datasets;
(2) the clients upload the local gradients to the server, and
the server aggregates the received multiple local gradients
to construct the global gradient; (3) the server uses the
global gradient to update the global model; (4) the clients
download the global model to the local to continue the next
training round. The above operations will be repeated until
the algorithm converges.

It is fascinating that FL can perform model training
without uploading source data, McMahan et al. [2] proposed
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that FL can achieve a similar test accuracy as the centralized
method based on the full training dataset while providing
stronger privacy guarantees. However, Lyu et al. [3] pro-
posed that the conventional FL is vulnerable to malicious
attacks from the Byzantine clients and the central server.
For example, the Byzantine clients upload false gradients
to affect the performance of the global model, which may
lead to training failure [4] [5]. Besides, the presence of
malicious server is widely considered in FL [6] [7] [8]
[9], and Hu et al. [10] proposed that external attacks on
the central server will cause the entire learning process to
terminate. In recent years, there have been a lot of works
to solve the security problem of FL. Some works aim to
design a robust aggregation rule to reduce the negative
impact of malicious gradients [11]. For example, Blanchard
et al. [4] proposed a Byzantine-tolerant algorithm Krum,
which can tolerate Byzantine workers via aggregation rule
with resilience property. Similarly, Yin et al. [12] proposed
two robust distributed gradient descent algorithms based
on coordinate-wise median and trimmed mean operations
for Byzantine-robust distributed learning. Chen et al. [13]
proposed a simple variant of the classical gradient descent
method based on the geometric median of means of the
gradients, which can tolerate the Byzantine failures. Some
other works detect Byzantine attackers and remove the
malicious local gradients from aggregation by clustering
[14] [15]. Different from the aforementioned works, Li et
al. [16] propose a framework that trains a detection model
on the server to detect and remove the malicious local gra-
dients. Although they can guarantee the convergence and
Byzantine-tolerant, they cannot provide effective defense in
the presence of malicious servers [17].
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As for the further comment, the typical FL requires a
central server to complete the gradient aggregation proce-
dure, thus it is difficult to find a fully trusted server in
actual scenarios. Beyond that, the entire FL system will be
paralyzed if the server suffers a malicious attack. Therefore,
a lot of works are devoted to designing a serverless FL
framework to reduce the risk of single point failure [18].
Some existing works design serverless FL frameworks by
learning from network protocols such as P2P [19] [20] and
Gossip [21] [22]. These approaches treat clients as network
nodes, which communicate with each other according to the
improved network protocol and complete the local training
and the aggregation of the global model. Besides, other
approaches employ blockchain technology to complete the
work of the server to achieve a serverless FL framework
[23] [24] [25] [26]. They treat clients as blockchain nodes,
record the local gradients uploaded on the block, and then
make the leading who completes the PoW (Proof of Work)
to ensure the aggregation procedure. However, few works
present the theoretical convergence analysis of the serverless
FL, leading to the lack of performance guarantee.

In this paper, we comprehensively consider Byzantine
attacks of both clients and the central server, and design a
serverless Federated Learning framework under Committee
Mechanism (CMFL), in which some participating clients
are appointed as committee members, and the committee
members take the responsibility for monitoring the entire
FL training process and ensuring the dependable aggre-
gation of the local gradients. The CMFL consists of three
components: the scoring system, the election strategy and
the selection strategy. The scoring system plays a role in dis-
tinguishing different clients. The election strategy is respon-
sible for selecting some clients who can represent the ma-
jority of clients to become members of the new committee.
Based on different considerations, we propose two opposite
selection strategies to make the committee members verify
local gradients uploaded by clients. A selection strategy is
designed to ensure the robustness of the training process,
where the committee members accept those local gradients
who are similar to their own local gradients but reject those
local gradients who are significantly different from their
own ones. The other selection strategy is designed to ac-
celerate the convergence of the global model in a non-attack
scenario, where the committee members accept those local
gradients who are different from their own local gradients
but reject those gradients who are similar to their own ones.
Compared to some existing Byzantine-tolerant algorithms
based on local gradient validation, such as Median [12],
Trimmed Mean [12] and Krum [4], CMFL achieves better
performance and higher robustness over various datasets,
illustrated by the experimental results. Besides, CMFL can
achieve a higher security level due to its decentralized set-
ting. Theoretical analysis on the convergence of the model
is further presented for the performance guarantee, which
illustrates the impact of the proposed election and selection
strategies. Extensive experiments further demonstrate the
outperformance of CMFL compared with both the typical
and Byzantine-tolerant FL models, coinciding with the the-
oretical analysis on the efficiency of the proposed election
and selection strategies. In summary, we highlight the con-
tributions as follow:

• We propose a serverless FL framework: CMFL, with
the ability to monitor the gradient aggregation pro-
cedure and prevent both malicious clients and the
server from hindering the training of the global
model.

• We propose an election strategy and two selection
strategies suitable for different scenarios, which can
ensure the robustness of the algorithm or accelerate
the training process.

• We give the proof and analysis of the convergence
of the proposed serverless FL framework for the the-
oretical guarantee, which considers the influence of
election and selection strategies on the performance
of the global model.

• We conduct extensive experimental results to show
that CMFL has a faster model convergence rate
and better model performance than the typical and
Byzantine-tolerant FL models.

The remainder of this paper is organized as follows.
Section 2 surveys related work. Section 3 briefly outlines the
background and problem formulation of FL. Section 4 intro-
duces our proposed framework. We show the convergence
analysis in Section 5.1 and complexity analysis in Section
5.2. Experimental results and analysis are summarized in
Section 6. We conclude the paper in Section 7. Finally,
Supplement gives the convergence proof.

2 RELATED WORK

Konečný et al. [27] introduce a new distributed optimization
setting in machine learning in 2015. Based on this setting the
concept of FL is proposed [1], which aims to train an efficient
centralized model in a scenario where the training data is
distributed across a large number of clients. However, these
frameworks suffer from heterogeneous clients, failing to
achieve satisfactory performance on the Non-IID dataset. To
further handle such issues, several works extend FL to Non-
IID dataset. Li et al. [28] presents the theoretical guarantees
under Non-IID settings and analyzes the convergence of
FedAvg. Li et al. [29] propose a framework FedProx with
convergence guarantees to tackle heterogeneity on the Non-
IID dataset. Yue et al. [30] proposed a strategy to mitigate
the negative impact of Non-IID data by share a small subset
of data between all the clients. Briggs et al. [31] improve the
performance of FL on the Non-IID dataset by introducing a
hierarchical clustering step to separate clusters of clients.
For the study on data heterogeneity, Haddadpour et al.
[32] generalize the local stochastic and full gradient descent
with a new scheme, periodic averaging, to solve nonconvex
optimization problems in FL. Dinh et al. [33] proposed
FEDL, a FL algorithm which can handle heterogeneous user
data without any assumptions except strongly convex and
smooth loss functions. Liu et al. [34] proposed momentum
federated learning (MFL) to accelerate the convergence, and
they establish global convergence properties of MFL and
originate an upper bound on the convergence rate. Different
from the aforementioned works, the proposed framework
provides a new perspective to enhance the performance on
the Non-IID setting.

The attractiveness of Federated learning relies on the
trainable centralized model on user equipment without up-
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loading user data. However, such a framework is vulnerable
to Byzantine attackers due to the lack of identity authenti-
cation for local gradients. Lots of works have designed a
series of Byzantine-tolerant algorithms to further ensure the
robustness of the training process. For example, Blanchard
et al. [4] proposed Krum, which aims to select the global
model update based on the Euclidean distance between the
local models. Yin et al. [12] proposed Median and Trimmed
Mean, which are designed to remove extreme local gradients
to ensure the robustness of the algorithm. The Median
method constructs a global gradient, where each element
is the median of the elements in the local gradients with the
same coordinate, while the Trimmed Mean method removes
the maximum and minimum fraction of elements in the
local gradients, and then performs a weighted average on
the remaining local gradients to construct the global gradi-
ent. Muñoz-González et al. [11] propose a Hidden Markov
Model to learn the quality of local gradients and design
a robust aggregation rule, which discards the bad local
gradients in the aggregation procedure. The aforementioned
algorithms are all trying to ensure the robustness of FL
by designing a more appropriate aggregation mechanism.
However, these works can not provide effective defense in
the presence of malicious servers.

In real applications, commercial competition makes it
difficult to find a fully trusted central server among the
participants. In addition, server error or malicious server
will also cause irreparable damage to the FL system. In
this way, many serverless FL frameworks are proposed
to solve these problems. Among these approaches, some
of them achieve a serverless FL framework by imitating
existing network protocols. For example, Abhijit et al. [19]
proposed a P2P serverless FL framework, where any two
clients exchange information end-to-end and update their
local models at each epoch. Hu et al. [21] used the Gossip
protocol to complete the model aggregation process, which
takes on the role of the central server. Besides, other works
build a serverless FL framework based on the blockchain
system. For example, Kim et al. [23] proposed a blockchain
FL architecture, in which they divide the blockchain nodes
into devices and miners. The device nodes provide data,
train the model locally, and upload the local gradients to
their associated miner in the blockchain network. Miner
nodes exchange and verify all the local gradients. Although
these works have obtained the corresponding performance
to some degree, they lack the theoretical analysis of the
model convergence under serverless FL framework and
consideration of Byzantine attacks of clients.

To deal with the limitations of the existing works,
we proposed a serverless FL framework under committee
mechanism. In scenarios that consider the Byzantine attacks,
the framework can be efficient Byzantine-tolerant of mali-
cious clients and servers. In scenarios without considering
the Byzantine attacks, the framework can achieve better
performance of the global model on the Non-IID dataset.
Beyond that, we present the theoretical analysis of the
convergence under the framework.

3 BACKGROUND

3.1 Federated Learning

A typical FL framework consists of a central server and
multiple clients. The server maintains a global model, and
each client maintains a local model. At the beginning of
training, the global model and all local models will be
initialized randomly. And then the following steps will be
performed at each communication round to continue the
training process [1]:
1. The server randomly selects a subset of clients, which

then download the global model to the local.
2. Each client in the subset performs a certain number of

Stochastic Gradient Descent (SGD) [35] [36] and com-
putes the local gradient.

3. The clients in the subset send their local gradients to the
server.

4. The server receives the local gradients and performs the
Federated Averaging (FedAvg) algorithm [37] to con-
struct a global gradient, which is used to update the
global model.
The above steps will be iterated until the algorithm

converges or the model accuracy meets the requirements.

3.2 Problem Formulation

We consider the typical FL setup with total K clients. The k-
th client for k = 1, ...,K owns a local dataset Dk, which
contains nk = |Dk| data samples. We denote the user-
defined loss function for sample ξ and model parameter
vector w as f(w, ξ), the local objective function Fk(w) on
the k-th client can be written as follows:

Fk(w) =
1

nk

∑
ξ∈Dk

f(w, ξ). (1)

We consider the following global objective function:

F (w) =
K∑

k=1

pkFk(w), (2)

where pk = nk/
∑K

k=1 nk denotes the weight of the dataset
on the k-th client. Formally, ∇Fk(w

t
k,i) denotes the local

gradient over dataset Dk. Assume that at round t the k-
th client trains its local model wt

k,i over mini-batch Bt
k,i

for i iterations of SGD, where Bt
k,i is randomly sampled

from Dk. Then the k-th client computes the local gradient
gk(w

t
k,i,Bt

k,i) by the following formula:

gk(w
t
k,i,Bt

k,i) =
1

|Bt
k,i|

∑
ξ∈Bt

k,i

∇f(wt
k,i, ξ). (3)

The gk(w
t
k,i,Bt

k,i) is used to update the local model wt
k,i as

follows:

wt
k,i+1 = wt

k,i − ηtigk(w
t
k,i,Bt

k,i), (4)

where ηti represents the local learning rate at iteration i of
round t and τ represents the maximal local SGD iterations.
And after τ iterations of local updating, the local gradient
gk(w

t
k,τ ,Bt

k,τ ) is sent to the server to construct a global
gradient as follows:



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

gt =
∑
k∈St

pk,Stgk(w
t
k,τ ,Bt

k,τ ), (5)

where St denotes the subset of clients and pk,St =
nk/

∑
k∈St nk is the weight of the dataset on the k-th client

of St. The wt is updated at each round as follows:

wt+1 = wt − ηtg
t, (6)

where ηt represents the global learning rate.

4 COMMITTEE MECHANISM BASED FEDERATED
LEARNING

The typical FL system is vulnerable to Byzantine attacks and
malicious servers due to its disability to implement a server-
less framework and the lack of verification for the uploaded
local gradients. The key insight of CMFL is to utilize the
committee mechanism to implement a decentralized frame-
work. Under such a decentralized framework, we appoint
some training clients as the committee members, which are
responsible for filtering the local gradients uploaded by
the remaining clients. The committee members must reach
a consensus on which the uploaded gradient should be
used for the global updating. In this way, the aggregation
process is controlled by all the committee members rather
than one untrustworthy central server. As long as the num-
ber of the honest committee members is greater than that
of the malicious members, attacks from malicious clients
become meaningless, since the decision of the committee
depends on the majority of the committee members. In
order to guarantee the honesty of committee members and
achieve a secure aggregation, we design a novel committee
mechanism, including a scoring system, selection strategy,
election strategy, and committee consensus protocol. The
detailed introduction of the proposed framework and the
training progress is involved in this section and the further
theoretical analysis of the framework is illustrated in Section
5.1.

4.1 Framework of CMFL
In the CMFL framework shown in Figure 1, the clients
are divided into three categories: training client, committee
client, and idle client. At each round, the following steps are
performed to complete the training process:

• Activate. A part of the idle clients are activated to be
the training clients, which participate in the training
at this round.

• Training. The training clients and the committee
clients download the global model to the local for
training, while the idle clients stay idle until the next
round. The training clients and the committee clients
perform SGD over their local dataset and compute
the local gradients. The difference is that the local
gradients on the training clients are used to update
the global model, while the local gradients on the
committee clients are used to verify the gradients
uploaded by the training clients.

• Scoring. The training clients send their local gra-
dients to each committee client and the committee

clients assign a score on them according to an estab-
lished scoring system.

• Selection. Only the qualified gradients according to
the set selection strategy will be used to construct the
global gradient.

• Aggregation. The clients who meet the selection
strategy are responsible for completing the aggrega-
tion procedure, which is called the aggregation client.

• Election. An election strategy is designed to com-
plete the replacement of committee members. A part
of the training clients who meet the election strategy
become the new committee clients.

• Step Down. The prior committee clients become the
idle clients, waiting for the next participate.

In a decentralized framework, we design a committee
consensus protocol based on Practical Byzantine Fault Tol-
erance(pBFT) [38], to complete the Selection, Aggregation,
and Election process.

Supposed that C clients will be selected as commit-
tee clients, the local model of c-th committee client for
c = 1, ..., C at round t is expressed as wt

c,τ . Assume that we
have a total of K clients, and m gradients will be accepted
at each round, which are verified by C committee members.
Also, we represent the committee client set, the training
client set and the aggregation client set at round t as St

c,
St
b and St

a respectively. The relevant symbols are shown in
Table 1.

TABLE 1: Notation

Notation Description

K Number of total clients
T Number of maximal communication rounds
τ Number of maximal SGD iterations
Dk Local dataset
Bt
k,i Mini-batch randomly sampled from Dk

wt
k,i Local model parameter

wt Global model parameter
w∗

k Optimal local model parameter
w∗ Optimal global model parameter
wt

c,i Local model parameter of committee client
f(w, ξ) Overall loss function
Fk(w) Local objective function

gk(w
t
k,i,B

t
k,i) Mini-batch local gradient for i iteration

∇Fk(w
t
k,i) Full local gradient for i iteration

ĝtk Local gradient for τ iterations
F ∗
k Optimal value of the local objective function

F ∗ Optimal value of the global objective function
St
a Aggregation client set

St
b Training client set

St
c Committee client set

m Number of clients in St
a

n Number of clients in St
b

C Number of clients in St
c

Pc
k Score of the k-th client assigned by the c-th client

Pk Final score of the k-th client

4.2 Committee Mechanism

A committee system is set up to complete the screening
of local gradients. The committee system consists of the
scoring system, the election strategy, the selection strategy
and the committee consensus protocol.
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Fig. 1: The training process of CMFL are as follows: (1) Training clients are selected randomly from the idle clients; (2) The
training clients and committee clients download the global model wt and start training, then send their local gradients ĝtk
to the committee clients; (3) The committee client assigns a score to each client according to the scoring system; (4) The
committee selects the aggregation clients according to the selection strategy; (5) The local gradients uploaded by the
aggregation clients are used to construct the global gradient wt+1; (6) New committee clients are elected from the training
clients according to the election strategy; (7) The committee clients of the last round are added to the idle client list.

4.2.1 Scoring System
The key insight of the scoring system is to distinguish
between the honest and malicious gradients by calculating
their Euclidean distance. The Euclidean distance of two
honest gradients is lower than that of an honest gradient
and a malicious gradient. Based on this insight, the scoring
system is designed as comparing the Euclidean distance of
two gradients, where the clients who upload the honest
gradients can obtain higher scores while the clients who
upload the malicious gradients will obtain the lower score.
Assume that the local gradient on the k-th training client
at round t is denoted as ĝtk = gk(w

t
k,τ ,Bt

k,τ ), and the
local gradient on the the c-th committee client at round t
is expressed as ĝtc = gc(w

t
c,τ ,Bt

k,τ ). The score Pc
k of the k-

th training client assigned by the c-th committee client is
computed as follows:

Pc
k =

1

||ĝtk − ĝtc||22
. (7)

Since ĝtk and ĝtc are local gradients generated from different
clients, we assume that ĝtk ̸= ĝtc for any k ∈ St

b, c ∈ St
c. We

define

Pk =
1

1
C

∑C
c ||ĝtk − ĝtc||22

=
C∑C
c

1
Pc

k

(8)

as the final score of the k-th training client. The scoring
principle is mainly based on the Euclidean distance between
the local gradients ĝtk and ĝtc. Another insight remains that
Byzantine attackers usually replace some local gradients

with malicious gradients, which directly increases the Eu-
clidean distance between these gradients and the honest
gradients. As a result, when the proportion of malicious
clients is within a tolerable range, the score of the malicious
training clients is expected to be lower than the honest
training clients. However, in a scenario without Byzantine
attacks, the score represents the degree of heterogeneity of
clients. A higher score means a higher degree of heterogene-
ity.

4.2.2 Selection Strategy
We design the selection strategy for determining which
uploaded gradient is used to update the global model.
Based on our scoring system, we can achieve a secure
aggregation by accepting the gradients with high scores,
since the malicious gradients obtain low scores. Besides, the
convergence analysis and experimental result show that the
opposite strategy performs better in a non-attack scenario.
Therefore, two opposite selection strategies are designed for
different considerations as follows:

• Selection Strategy I. The selection strategy I selects
several local gradients with relatively higher scores
to construct a global gradient for the update of the
global model. In other words, we hope that the
local gradients which are similar to the committee
gradients in the Euclidean space will participate in
the construction of the global gradient. In practice,
we sort the local gradients according to their scores
and only accept the top α% of them. We design the
selection strategy for the consideration of robustness.
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Those malicious gradients and honest gradients are
far from each other in the Euclidean space, and
choosing the gradients close to the committee gradi-
ents under the condition that the committee clients
are honest can achieve a more robust aggregation
process. However, it is difficult for those clients with
obvious differences to be selected to participate in
the aggregation procedure, which makes it hard for
the global model to learn the comprehensive data
characteristic, resulting in a decline in performance.
Overall, selection strategy I is suitable for FL scenar-
ios with Byzantine attacks.

• Selection Strategy II. The selection strategy II selects
several local gradients with relatively lower scores
to construct a global gradient for the update of
the global model. That is, we hope that the local
gradients which are different from the committee
gradients in the Euclidean space will participate in
the construction of the global gradient. Similar to
the selection strategy I, we sort the local gradients
according to their scores and only accept the bottom
α% of them in practice. We design the selection
strategy II for the consideration of convergence rate
and performance of the global model. Constructing
a global gradient by selecting those local gradients
with obvious differences allows the global model to
learn more comprehensively, gaining a faster conver-
gence and better performance of the global model.
However, this strategy can not provide robustness
guarantees, mainly since that the malicious gradients
will be preferentially used in global learning, leading
to a sharp drop in the performance of the global
model. Overall, selection strategy II is suitable for
FL scenarios without Byzantine attacks.

4.2.3 Election Strategy

The election strategy is designed for guaranteeing the hon-
esty of committee clients. The committee members reach a
consensus on their decisions, and the committee’s decision
depends on the majority of the committee members. How-
ever, the malicious clients mixed into the committee may
interfere with the committee’s decision-making. Therefore,
the committee must guarantee that its honest members are
more than malicious members. Otherwise, the committee
can not filter out the malicious gradients. We sort the
training clients according to their scores and then select
these training clients closed to the middle position as the
committee clients for the next round. We design the election
mechanism based on the following two considerations:

• Robustness. According to the above analysis, as mali-
cious training clients will get lower scores than hon-
est training clients, they are expected to locate at the
end of the sorted sequence. Therefore, choosing the
training client closed to the middle or upper position
prevents the malicious training clients from becom-
ing the committee clients in the next round, thereby
guaranteeing the security of the global model. Al-
though there may still be a small number of ma-
licious clients mixed into the committee members
when the proportion of malicious clients is relatively

large, it is difficult to affect the judgment of the
whole committee because of their exceeding small
proportion of the committee members.

• System Stability. Those training clients with the high-
est scores are not chosen to be the new committee
members in order to avoid the system from relying
too much on the initialization of committee mem-
bers. When we choose those training clients with the
highest scores to form a new committee, the learning
direction of the global model will be completely
determined by the initial committee members. It is
because those clients with a large Euclidean dis-
tance between the local gradient and the committee
gradients are not only difficult to be selected to
participate in the aggregation procedure, but also
lost the opportunity to run for the next round of
committee members. This is in line with our intuition
that “committee members should be those who can
represent the majority”.

4.2.4 Committee Consensus Protocol
In our decentralized framework, the committee clients must
reach a consensus to complete the scoring, aggregation,
selection, and election process. Thus we design a committee
consensus protocol, which is inspired by the pBFT [39].
The designed committee consensus protocol(CCP) is as fol-
lows(at round t):

1) After the scoring process, each committee client obtains
the scores of the training clients. Then every committee
client broadcast its scores to the other committee clients.
Each committee client is able to calculate the total score
of every training client by Eq. (8).

2) A committee client p is selected as the primary commit-
tee client by random, while other committee clients are
regarded as the replicate committee clients.

3) Each committee client decides its aggregation set St
a,c

according to the selection strategy. Since all scores are
broadcasted among committee clients, the aggregation
sets among honest committee clients are the same.

4) The primary committee client creates a request ⟨ Re-
quest, St

a,p, operation, timestamp ⟩ to ask whether its St
a,p

is correct. Then the primary committee client broadcasts
the request to all the replicate committee clients. The
operation in the request is to aggregate the local gradi-
ents uploaded by aggregation clients as Eq.(5)

5) All the replicate committee clients execute the request.
Each of them checks whether the St

a,p is the same as its
own St

a,c. If so, it performs the aggregation process as
Eq. (5). After aggregation, it checks whether the result
is consistent with the request. If so, the executing result
⟨ Reply, timestamp, St

a,p, response ⟩ is returned to the
primary committee client.

6) The primary committee client checks whether it has
received at least ⌊C/2⌋ + 1 identical results from repli-
cate committee clients. If so, the consensus is reached;
otherwise, the primary committee client should be re-
assigned and steps 3)-6) should be repeated.

7) Similarly, steps 3)-6) are repeated to reach consensus on
new committee client set St+1

c (However, the aggrega-
tion client set St

a in step 3)-6) should be replaced by
new committee client set St+1

c ).
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8) The primary committee client broadcasts the global
model to all other clients. The next training round is
ready to start.

Algorithm 1 Committee Consensus Protocol

Input: t, St
c, St

b

Output: global model wt, new committee client set St+1
c

1: for c ∈ St
c do

2: for k ∈ St
b do

3: The c-th committee client broadcasts score Pc
k to

other committee clients.
4: end for
5: end for
6: for c ∈ St

c do
7: for k ∈ St

b do
8: The c-th committee client calculates the total score

Pk of the k-th training client.
9: end for

10: end for
11: The committee performs voting(St

a, aggregtion) as Al-
gorithm 2 and gets the global model wt.

12: The committee performs voting(St+1
c , None) as Algo-

rithm 2.

Algorithm 2 The voting algorithm

Input: The client set S and the opertation o
Output: The result r of the operation o
1: while No consensus on S do
2: The primary committee client p is selected from com-

mittee clients by random.
3: for k ∈ St

c do
4: The k-th committee client decides its client set Sk

according to the corresponding strategy (selection
strategy/election strategy).

5: end for
6: p performs the operation o and gets r.
7: p creates a request ⟨ Request, Sp, o, timestamp ⟩ and

broadcasts it to all the replicate committee clients.
8: for k ∈ St

c \ {p} do
9: The k-th replicate committee client receives the

request from p.
10: if Sk == Sp then
11: The k-th committee client performs the operation

o.
12: Return ⟨ Reply, timestamp, Sp, response ⟩ to p.
13: end if
14: if p receives at least ⌊C/2⌋+ 1 response then
15: Consensus is reached on S.
16: end if
17: end for
18: Return r.
19: end while

4.3 Training Algorithm

In this section, we introduce the serverless training algo-
rithm of CMFL. Firstly, all clients randomly initialize the
local model and some clients are randomly selected as

the committee clients. In each communication round, the
algorithm performs the following five steps:

1) Random Sampling: A part of the clients from the non-
committee clients will be selected randomly as the
training clients while the other clients become the idle
clients. At round t all training clients and committee
clients download the global model from the primary
committee client as the local model.

2) Local Training: All training clients and committee clients
perform τ rounds of SGD over the local datasets and
compute the local gradients. The training clients send
their local gradients to each committee client for verifi-
cation.

3) Gradient Verification: Each committee client assigns a
score on each training client according to the scoring
system. Then they execute CCP to reach a consensus on
aggregation client set St

a.
4) Global Model Updating: In CCP, the local gradients up-

loaded by clients in St
a are aggregated for constructing

the global gradient, which is used to update the global
model according to the Eq. (6) when the consensus is
reached.

5) Election of New Committee Members: The committee
clients execute CCP to reach a consensus on new com-
mittee clients set St+1

c

The algorithm repeats the above five steps until the
algorithm converges or t exceeds the defined maximum
communication round T .

Algorithm 3 The training algorithm of CMFL

Input: τ , T , K , m, C , ηt, ηti
Output: target global model wT

1: Initialize w1, S1
c and S1

b randomly.
2: for t = 1 to T do
3: for k ∈ St

b ∪ St
c do

4: for i = 1 to τ do
5: The k-th client runs the SGD over the local

dataset by wt
k,i ⇐ wt

k,i−1− ηtigk(w
t
k,i−1,Bt

k,i−1).
6: end for
7: end for
8: for k ∈ St

b do
9: for c ∈ St

c do
10: The k-th training client send its local gradient ĝtk

to the c-th committee client.
11: The c-th committee client assign a score Pc

k on
the k-th training client/local gradient according
to the scoring system.

12: end for
13: end for
14: The committee clients execute CCP to complete the

selection, aggregation, and election process.
15: The St

b be reinitialized to form the St+1
b .

16: for k ∈ St+1
b ∪ St+1

c do
17: The k-th client downloads the global model from

the primary committee client.
18: end for
19: end for
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5 THEORETICAL ANALYSIS

In this section, we show the theoretical analysis of CMFL,
including convergence analysis and complexity analysis.

5.1 Convergence Analysis
In this section, we conduct the convergence analysis of the
proposed framework CMFL. First, we introduce some basic
assumptions used for the convergence analysis in Section
5.1.1. Second, we introduce two definitions that facilitate our
analysis in Section 5.1.2. Finally, we present our result and
analysis for convergence of CMFL in Section 5.1.3. The proof
of the convergence is presented in the Supplement.

For the purpose of convergence proof and analysis,
we define F ∗ = minw F (w) = F (w∗) as the optimal
value of the global objective function, where w∗ denotes
the optimal global model. In the same way we define
F ∗
k = minw Fk(w) = Fk(w

∗
k) as the optimal value of the

k-th client’s local objective function, where w∗
k denotes the

optimal local model of k-th client.

5.1.1 Assumptions
First, we introduce the assumptions used for convergence
analysis.
Assumption 1. (Lipschitz Gradient). F1, ..., FK are all L-

smooh: for all v,w ∈ Rn, k = 1, ...,K , Fk(v) ≤ Fk(w) +
(v −w)T∇Fk(w) + L

2 ||v −w||22.

Assumption 2. (µ-strongly Convex Gradient). F1, ..., FK are
all µ-strongly convex: for all v,w ∈ Rn, k = 1, ...,K ,
Fk(v) ≥ Fk(w) + (v −w)T∇Fk(w) + µ

2 ||v −w||22
Assumption 3. (Bounded Variance). For the mini-batch Bt

k,i

uniformly sampled randomly from k-th client’s dataset Dk, the
resulting stochastic gradient is unbiased: E[gk(w

t
k,i,Bt

k,i)] =
∇Fk(w

t
k,i) for all k = 1, ...,K, t = 1, ..., T, i = 1, ..., τ .

And the variance of stochastic grandient in each client is
bounded: E||gk(wt

k,i,Bt
k,i)−∇Fk(w

t
k,i)||2 ≤ σ2.

Assumption 4. (Bounded Gradient). The local gradi-
ent’s expected squared norm is uniformly bounded:
E||gk(wt

k,i,Bt
k,i)||2 ≤ G2 for all k = 1, ...,K, t =

1, ..., T, i = 1, ..., τ .

Assumption 5. (Bounded Objective Function). For any aggre-
gation client set Sa /∈ ∅ and the optimal committee client set
S∗
c /∈ ∅, the difference of local optimal objective function is

bounded: E[||
∑

k∈Sa
pk,Sa

F ∗
k −

∑
k′∈S∗

c
pk′,S∗

c
F ∗
k′ ||] ≤ κ2,

where S∗
c satisfies that S∗

c = argminSc

∑
k∈Sc

pk,ScF
∗
k and

|S∗
c | = C .

Assumption 1 and 2 are standard conditions in FL setting
[40] [41] [42] [43] and many common machine learning
optimization algorithms meet these assumptions, such as
the ℓ2-norm regularized linear regression, logistic regres-
sion, and softmax classifier [28]. Assumption 3 is a form of
bounded variance between the local objective functions and
the global objective function [44], and Assumption 4 is fairly
standard in nonconvex optimization literature [45] [46] [47]
[48]. They are widely used in the FL convergence analysis,
such as Li et al. [28] and Cho et al. [49]. Assumption 5 is
used to constrain the optimal objective function deviation
between the aggregation client set and the committee client

set caused by the committee mechanism. For the need of
convergence proof, we define S∗

c as the set which contains
C clients with the smallest optimal local objective function
F ∗
k .

5.1.2 Definition
We introduce two related definitions for the convenience of
analysis as follows.

Definition 1. (Degree of Heterogeneity). We use

Γ = F ∗ −
K∑

k=1

pkF
∗
k =

K∑
k=1

pk(Fk(w
∗)− Fk(w

∗
k)) (9)

to quantify the degree of heterogeneity among the clients.

Li et al. [28] proposed this definition, which is widely used
in the convergence analysis of FL on Non-IID dataset [50].
In the Non-IID FL scenarios, the Γ remains nonzero and its
value reflects the heterogeneity of the data distribution. In
the IID FL scenarios, with the growth of K the Γ gradually
goes to zero.

Definition 2. (Aggregation-Committee Gap). For any aggre-
gation client set St

a, we define

φ(St
a,w)

=
E[
∑

k∈St
a
pk,St

a
Fk(w)−

∑
k′∈S∗

c
pk′,S∗

c
F ∗
k′ ]

F (w)−
∑K

k=1 pkF
∗
k

≥ 0,
(10)

where E denotes the expectation over all randomness in the
previous iterations, and S∗

c denotes the optimal committee
client set.

φ(St
a,w) changes with the changes of St

a and w during
training. An upper bound φmax and a lower bound φmin

are defined to obtain a conservative error bound in the
convergence analysis:

φmin = min
St
a,w

φ(St
a,w), φmax = max

St
a

φ(St
a,w

∗). (11)

5.1.3 Convergence Result and Analysis
We analyze the convergence of Algorithm 3 in this section
and find an upper bound of E[F (w(T ))]−F ∗, which denotes
the convergence error of the global model after T rounds:
Theorem 1. (Convergence of Committee Mechanism based

Federated Learning). Under Assumption 1 to 5, Definition 1
to 2 and the learning rate ηt, where ηt = 1

µ(t+γ) and γ = 4L
µ ,

the error after T rounds of CMFL satisfies

E[F (wT )]− F ∗

≤ 1

T + γ

[
4L(32τ2G2 +

∑K
k=1 pkσ

2
k) + 24L2κ2

3µ2φmin

+
8L2Γ

µ2
+

Lγ||w1 −w∗||2

2

]
+

8LΓ

3µ

(
φmax

φmin
− 1

)
,

(12)

where L, µ and σ represent the constant light indicated in
the Assumption 1, 2 and 3. G and κ represent the upper
bound values defined in Assumption 4 and 5 .Γ denotes the
heterogeneity among the clients according to the Definition
1. These are all constant while φmin and φmax will be
different depending on the selection strategy. The impact of
selection strategy on φmin is analyzed below. CMFL affects
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the performance of the global model by altering φmin. The
proof of the theorem is shown in Supplement.

The impact of selection strategy on φmin. According to
the definition, the value of φ is positively correlated with∑

k∈St
a
pk,St

a
Fk(w), which represents the average local loss

of the model over the aggregation client set St
a. Under our

framework, the lower bound of φ(St
a,w

t) defined as φmin

affects the convergence rate of the global model, where wt

represents the global model at round t. In general, those
clients whose data set distribution is similar to that of the
majority have a relatively low local loss, while others have
a relatively high local loss. We call the former universal
clients and the latter extreme clients. The tendency to choose
a universal client for aggregation results in low φmin, and
the tendency to choose an extreme client for aggregation
results in high φmin. The building of the election strategy
ensures that committee members can represent the majority,
and the scoring system is designed as the clients similar to
committee members can get higher scores, so clients with
high scores are more likely to have a low local loss. When
we adopt selection strategy I, we get a low φmin. Instead,
when we adopt selection strategy II, we get a high φmin.

Effect of φmin on convergence rate. Note that a higher
φmin results in faster convergence at the rate O( 1

Tφmin
).

That is, adopting the selection strategy I make the conver-
gence of the global model slows down, while the selection
strategy II accelerates the convergence of the global model,
which is verified in the following experiments. However,
considering the reality of Byzantine attacks, the first selec-
tion strategy is a more appropriate choice.

5.2 Complexity Analysis

In this section, we analyze the computation complexity
and communication complexity of the proposed framework
CMFL. For each complexity analysis, the time and overhead
of CMFL are considered. Recall the previous notations, we
define C as the number of committee clients, n as the
training clients. Noted that m represents the number of
aggregation clients.

5.2.1 Computaion Complexity
There are five phases related to computation complexity as
follows:

• Local Training. Each training client and committee
client performs SGD locally before they upload their
local gradients. The computation overhead of k-th
client is O(|Dk| · |w|), where |Dk| is the number of
data samples, |w| is the model size. Assumed that |D|
represents the average value of |Dk| over all clients,
the total computation overhead is O((n + C)|D| ·
|w|). Because each client performs local training in
parellel, the computation time of local training is
O(|D| · |w|).

• Scoring. In the phase of scoring, each committee
client assigns a score to each training client. Accord-
ing to the scoring system, the computation overhead
of scoring for one committee client is O(n · |w|2).
The total computation overhead of scoring is O(n ·
C · |w|2). As each committee client performs scoring

operation in parallel, the computation time of scoring
is O(n · |w|2).

• Aggregation. In the phase of aggregation, only m
local gradients are used for aggregation, so the com-
putation overhead of aggregation for one committee
client is O(m · |w|). According to the CCP, each com-
mittee client performs aggregation so the total com-
putation overhead of aggregation is O(m · C · |w|).
Since the aggregation process is performed in paral-
lel, the computation time of aggregation is O(m·|w|).

• Selection. In the phase of selection, each committee
client sorts the received local gradients and selects
m local gradients for aggregation. The computation
overhead is O(nlogn), which can be ignored since it
is much smaller than the computation overhead of
the above three phases.

• Election. In the phase of the election, each committee
client determines its new committee client set based
on the sorted local gradients. The computation over-
head is O(1), which can be ignored because it is
much smaller than the computation overhead of the
above four phases.

5.2.2 Communication Complexity
Assumed that each client owns the same maximum band-
width, and r represents the max transmission rate, the
communication time of transferring data s is computed
as Ttransmission = s/r. There are three phases related to
communication complexity as follows:

• Gradient Uploading. After local training each train-
ing client uploads its local gradient to all the com-
mittee clients, so the communication overhead of up-
loading for one client is O(C · |w|). The total commu-
nication overhead of uploading is O(n·C ·|w|). Since
each training client performs the uploading process
in parellel, the communication time of uploading is
O(C · |w|/r).

• Global Model Downloading. After global aggre-
gation, the primary committee client broadcasts the
global model to all training clients in the next round.
The total communication overhead of downloading
is O(n · |w|), thus the communication time of down-
loading is O(n · |w|/r).

• Broadcasting. Committee clients should perform
CCP to reach consensus, in this phase the primary
committee client broadcast St

a and St+1
c to other

committee clients, which occur communication over-
head. However, this communication overhead can be
ignored because it is much smaller than the commu-
nication overhead of uploading and downloading.

Besides, system heterogeneity is a widespread problem
in the field of Federated Learning. The differences in the
computational performance of clients lead to various time
consumptions, which becomes the bottleneck limiting the
efficiency of the Federated Learning system. Some clients
even drop out during the training process. There are some
methods to alleviate the performance degradation caused by
system heterogeneity, such as setting a maximum waiting
time or a minimum number of received gradients. Indeed,
system heterogeneity is an important issue in Federated
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Learning, and more works need to be carried out to address
it.

6 EXPERIMENTS

In this section, we first present our experimental setup
in Section 6.1, which includes the datasets, models, and
experimental environment. Then, we evaluate our proposed
framework CMFL by five sets of following experiments,
and the results and analysis are presented in Section 6.2 to
Section 6.6.

1) Normal Training Experiment. We test the performance
of CMFL without considering the Byzantine attack and
compare it with typical FL.

2) Robustness Comparative Experiment. We evaluate the
Byzantine resilience of CMFL and compare it with
several Byzantine-tolerant algorithms.

3) Hyperparameter Analysis Experiment. We vary the
hyper-parameter α, ω, and ϵ and show how it affects
the performance.

4) Efficiency Experiment. We evaluate the efficiency of
CMFL and compare it with other decentralized FL
frameworks while considering the computation and
communication overhead.

5) Committee Member Analysis Experiment. We track
the malicious clients that have been mixed into the
committee members to analyze the impact of these ma-
licious clients on the performance of the global model.

6.1 Experimental Setup

6.1.1 Datasets and Models
We evaluate CMFL over three datasets with a Non-IID set-
ting, including FEMNIST, Sentiment140, and Shakespeare.

• FEMNIST-AlexNet. [51] FEMNIST (Federated Ex-
tended MNIST) is a real-world distributed dataset
formed by a specific division of the EMNIST dataset.
This dataset is used to train a model for handwrit-
ten digit/character recognition tasks, which contains
805263 images of 28× 28 pixels, divided into 64 cat-
egories, each category represents a type of handwrit-
ten digit/character (0 − 9 and a − z). The FEMNIST
dataset divides the EMNIST dataset into 3550 parts
in a specific way and stores them on each client
to simulate a real federated learning scenario. We
use the convolutional neural network AlexNet as the
basic experimental model for this image classification
dataset.

• Sentiment140-LSTM. [52] Sentiment140 is a real-
world distributed dataset which focus on the text
sentiment analysis task, including 1,600,000 tweets
extracted using the Twitter API. The data in this
dataset has been annotated (0 = negative, 2 = neutral,
4 = positive). It can be used to discover the sentiment
of a brand, product, or topic on Twitter. We regard
each Twitter account as a client and choose a two-
layer LSTM binary classifier as the basic experimen-
tal model. The LSTM binary classifier includes 256
hidden units with pretrained 300D GloVe embedding
[53].

• Shakespeare-LSTM. [54] Shakespeare is a real-world
distributed dataset built from The Complete Works of
William Shakespeare. Each speaking role corresponds
to a different device, and we choose a two-layer
LSTM classifier as the basic experimental model,
which contains 100 hidden units with an 8D em-
bedding layer. There are 80 classes of characters in
dataset. The model takes a sequence of 80 characters
as input, embeds each character into a learned 8-
dimensional space, and outputs one character for
each training sample after 2 LSTM layers and a
densely connected layer.

The Non-IID levels of these two datasets are shown in
Table 2.

6.1.2 Environment
Global Setup: At the beginning of each communication

round, 10% of the idle clients are activated to participate in
the training, while the rest clients wait for the next selection.
At one communication round, each client runs one iteration
of SGD for local training. Besides, the initial committee
clients are selected from all clients at random. In order to
better demonstrate the experimental effect, we set different
learning rates η in different datasets.

Machines: We perform our experiment on a commodity
machine with Intel Core CPU i9-9900X containing a clock
rate of 3.50 GHz with 10 cores and 2 threads per core. And
we utilize Geforce RTX 2080Ti GPUs to accelerate training.
The learning model is implemented in Python 3.7.6 and
Tensorflow 1.14.

Hyper-parameter Notation: In each communication
round, 10% of the whole clients are activated to participate
in the training of that round, ω% of which become the com-
mittee clients and the rest become the training clients. Each
round α% of the training clients become the aggregation
clients, whose local gradients are accepted to use for the
constructing of the global gradient. ϵ presents the percentage
of malicious clients.

6.2 Nomal Training Experiment
6.2.1 Experiment Setting
In this experiment we set α = 40, ω = 40 and ϵ = 0
to simulate a non-attack FL scene. The η in FEMNIST
and Sentiment140 is 0.001 and 0.005 respectively. In this
experiment, we compared typical FL and CMFL under these
two selection strategies:

• Typical FL. Typical FL uses all the local gradients
uploaded by the training client for the construction
of global gradients.

• CMFL with Selection Strategy I. The original inten-
tion of this selection strategy is to resist Byzantine
attacks. The committee accepts the local gradients
uploaded by the high-score training clients while
rejects those uploaded by low-score training clients.

• CMFL with Selection Strategy II. This selection
strategy is opposite to selection strategy I, accepting
the local gradients uploaded by the low-score clients
while rejects those uploaded by high-score training
clients.
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TABLE 2: Statistics of datasets

Dataset Number of devices Total samples Mean Stdev

FEMNIST 3,550 805,263 226.83 88.94
Sentiment140 772 40,783 53 32
Shakespeare 143 517,106 3616 6808

(a) FEMNIST-Accuracy (b) Sentiment140-Accuracy (c) Shakespeare-Accuracy

(d) FEMNIST-Loss (e) Sentiment140-Loss (f) Shakespeare-Loss

Fig. 2: The performance of global model among the typical FL and CMFL with two selection strategies.

6.2.2 Result Analysis

We show the result in Figure 2. Note that the performance of
CMFL under selection strategy II is better than that of CMFL
under selection strategy I and typical FL. The CMFL under
the selection strategy I has the slowest model convergence
rate and the worst model accuracy among the three. The
result shows that it is a more appropriate design for the com-
mittee to accept the local gradients uploaded by the low-
score clients when in non-attack FL scene, which can not
only enhance the global model performance but also acceler-
ate the convergence of the global model. This is because over
the Non-IID dataset, the CMFL under the selection strategy
I makes it difficult for a few clients which are quite different
from other clients to participate in the aggregation process,
resulting in the training of the global model only using part
of the data instead of all of the data. Figure 3(a) proves
it. We record the aggregation times of each client and plot
them as a curve graph. From the curve, we can see that the
aggregation times of client under FL conform to a Gaussian
distribution, causing FL selects the aggregation randomly.
Besides, we found that a high percentage of clients never
participate in the aggregation process when performing
CMFL under selection strategy I. That is why CMFL under
selection strategy I achieves worse performance than typical
FL and CMFL under selection strategy II. It is difficult
for the global model to learn comprehensive knowledge

while using this kind of training algorithm. However, the
CMFL under the selection strategy II significantly reduces
the number of such clients. In this way more clients can
participate in the aggregation process, making the global
model learn a more comprehensive knowledge. Figure 3(b)
and 3(c) explain why CMFL under selection strategy II
achieves a better performance than typical FL. We record
the testing accuracy of each client after training. Figure
3(b) shows that CMFL under selection strategy II has least
clients with low accuracy, while has most clients with high
accuracy. That is because those clients with low accuracy
have more opportunities to participate in the aggregation
process, which is proved by Figure 3(c). Figure 3(c) shows
that the aggregation times of clients with low accuracy in
CMFL under selection strategy II are much more than other
training methods. By reducing the proportion of clients with
low accuracy, CMFL under selection strategy II achieves a
better performance than typical FL.

Nevertheless, it is not advisable to choose strategy II
when considering the Byzantine attack. According to the
scoring system we designed, the malicious client will get
a lower score than the honest client. Taking the selection
strategy II means that Byzantine attackers can easily attack
the global model by uploading malicious local gradients.
In this scenario, choosing strategy I is a more appropriate
choice by avoiding the local gradients with low scores to
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participate in the aggregation, which is likely to be malicious
gradients. Although the effect of CMFL under strategy I in
the non-attack FL scenario is slightly weaker than that of the
typical FL, it can make the training process more robust in
a wider range of realistic scenarios.

6.3 Robustness Comparative Experiment
6.3.1 Experiment Setting
In this experiment we set α = 40, ω = 40 and ϵ = 10,
and we test the Byzantine resilience of CMFL under two
selection strategies by comparing it with the following
Byzantine-tolerant algorithms, which are all aim to design a
robust gradient aggregation method.

• Median [12]: This aggregation method first sorts the
gradients and selects the median to be the global
gradient.

• Trimmed Mean [12]: This aggregation method first
sorts the local gradients, then removes the maximum
value of β% and the minimum value of β%, and
finally aggregates the remaining local gradients to
construct the global gradient, where β ∈ [0, 50).

• Krum [4]: This aggregation method assumes that the
directions of the local gradients uploaded are rela-
tively similar and sort these local gradients according
to their similarity. The original Krum algorithm only
selects the first local gradient after sorting as the
global gradient.

• Multi-Krum [4]: The Multi-Krum algorithm is an
improved version of the original Krum, which se-
lects the top α% of the sorted local gradients to
construct the global gradient. Compared with the
original Krum, Multi-Krum reduces the fluctuation
of the global model effect caused by random fac-
tors, making the training process more stable. Since
Multi-Krum uses more local gradients to construct
the global gradients, it can make the global model
converge faster than the original Krum.

We compare these Byzantine-tolerant algorithms with
CMFL considering three different types of attacks: gradi-
ent scaling attack, same-value gaussian attack, and back-
gradient attack, where the attackers are all aim to compro-
mise some clients and upload the malicious gradients.

• Gradient Scaling Attack: The malicious clients mul-
tiply each element in the local gradient by a random
value λ ∈ [a, 1), where a is a defined constant
which indicates the magnitude of the attack. In this
experiment we set a = 0.5.

• Same-value Attack [55]: The malicious clients re-
place the local gradient with a vector of the same
size whose elements are all 0.

• Back-gradient Attack [56]: The malicious clients re-
place the local gradient with a vector of the same size
in the opposite direction.

6.3.2 Result Analysis
We show the performance of CMFL compared with other
Byzantine-tolerant algorithms under various attacks in Fig-
ure 4-6. We analyzed the performance of each Byzantine-
tolerant algorithm.

• CMFL-selection strategy I always reaches the fastest
global convergence speed and highest accuracy
among these five algorithms. Note that in the model
accuracy curve, the CMFL curve fluctuates more ob-
viously than Median and Multi-Krum, which is the
normal curve fluctuation caused by the replacement
of committee members. Nevertheless, its overall ac-
curacy rate is still higher than the other algorithms.

• CMFL-selection strategy II achieves as poor perfor-
mance as typical FL. Obviously, the malicious clients
can easily participate in the aggregation process.

• Median [12] has maintained a relatively stable per-
formance under a variety of attacks. It only selects
the median of the local gradients as the global gradi-
ent, which is regarded as a relatively conservative
approach. Although Median can effectively resist
Byzantine attacks, it is difficult to achieve excellent
model performance.

• Trimmed Mean [12] has an unstable performance
under different attacks. Trimmed Mean performs
well under gradient scaling attack but still not as
good as Median and Multi-Krum, and performed
extremely badly under same-value attack and back-
gradient attack. This Byzantine-tolerant algorithm
cannot effectively resist the Byzantine attacks.

• Krum [4] performs poorly under all three attacks,
and there were sharp fluctuations in the training
process. Krum only selects the first local gradient
after sorting as the global gradient each time. This
aggregation method that does not consider the over-
all results in severe fluctuations of the global model.

• Multi-Krum [4] has the second-best model perfor-
mance overall. Multi-Krum improves the original
Krum and eliminates the jitter generated during the
training process.

Note that the CMFL is the only framework without
involving a central server, which naturally achieves ro-
bustness against the influence of a malicious server. Other
Byzantine-tolerant algorithms cannot achieve the same ro-
bustness owing to their naturally centralized architecture.

6.4 Hyper-parameter Analysis Experiment

6.4.1 Experiment Setting

In this experiment, we consider the effect of hyper-
parameter by varying the hyper-parameter α, ω and ϵ.
Specifically, we consider the back-gradient attack and de-
signed three sets of sub-experiments. In each set of sub-
experiments, we fixed one of the hyper-parameters and
changed the other two hyper-parameters to analyze their
impacts on the model performance.

• Sub-experiment I. Fixed α = 40 and vary ω, ϵ to
{10, 20, 30, 40, 50}.

• Sub-experiment II. Fixed ω = 40 and vary α, ϵ to
{10, 20, 30, 40, 50}.

• Sub-experiment III. Fixed ϵ = 10 and vary α, ω to
{10, 20, 30, 40, 50}.
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(a) (b) (c)

Fig. 3: Figure (a) shows the number of clients with different aggregation times. Figure (b) shows the number of clients
with different accuracy. Figure (b) shows the aggregation times of clients with different accuracy.

(a) Gradient Scaling Attack Loss (b) Same-value Attack Loss (c) Back-gradient Attack Loss

(d) Gradient Scaling Attack Accuracy (e) Same-value Attack Accuracy (f) Back-gradient Attack Accuracy

Fig. 4: Performance of CMFL compared with other Byzantine-tolerant algorithms under various attacks over FEMNIST
dataset. CMFLI represents CMFL under selection strategy I and CMFL II represents CMFL under selection strategyII.

6.4.2 Result Analysis
We show the results in Figure 7 and the analysis as follows:

• Appropriately increasing the number of commit-
tee members can enhance the performance of the
global model. The results show that within a suitable
parameter value range (e.g., α = 10, ϵ ≤ 30, ω ≤ 30),
more committee members lead to better global model
performance. This is mainly since an appropriate
increase in the number of committee members can
enhance the robustness of the committee to a certain
extent, in the meanwhile avoid the existence of ”dic-
tators” and prevent the training process from being
controlled by a small number of clients, which makes
it difficult for some other clients to participate in the
aggregation process.

• Appropriately increasing the proportion of the ag-
gregation clients can enhance the performance of
the global model. Within a suitable parameter value

range, a higher proportion of the aggregation clients
leads to better global model performance. Because
in the normal operation of the committee, sorting
the local gradients uploaded by the training client
according to their scores makes the honest local gra-
dients come first and the malicious gradients second.
In this ideal situation, we control the proportion of
aggregated clients to be less than a threshold χ to
prevent malicious gradients from participating in the
aggregation process. Under the limit of α ∈ (0, χ],
the increase of α means that more honest local gra-
dients are selected to construct the global gradient in
each round, which can achieve better global model
performance.

• Excessive α, ω, and ϵ will lead to a cliff-like decline
in the performance of the global model. When we
increase the proportion of committee members, it
means that both malicious clients and honest clients
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(a) Gradient Scaling Attack Loss (b) Same-value Attack Loss (c) Back-gradient Attack Loss

(d) Gradient Scaling Attack Accuracy (e) Same-value Attack Accuracy (f) Back-gradient Attack Accuracy

Fig. 5: Performance of CMFL compared with other Byzantine-tolerant algorithms under various attacks over
Sentiment140 dataset.

(a) Gradient Scaling Attack Loss (b) Same-value Attack Loss (c) Back-gradient Attack Loss

(d) Gradient Scaling Attack Accuracy (e) Same-value Attack Accuracy (f) Back-gradient Attack Accuracy

Fig. 6: Performance of CMFL compared with other Byzantine-tolerant algorithms under various attacks over Shakespeare
dataset.

(a) α = 40 (b) ω = 40 (c) ϵ = 10

Fig. 7: Model performance of CMFL with varying the hyper-parameters.
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have a greater probability of being elected as com-
mittee members. This increases the probability of
malicious clients mixing into committee members
and damage the committee’s scoring system, making
it difficult to assign the correct score to the training
clients. In the worst situation, once the proportion
of the malicious clients among committee members
is relatively large, the scores of the malicious clients
will be higher than those of the honest clients, re-
sulting in the malicious local gradient uploaded by
the malicious clients being used to construct the
global gradient. Hence, the performance of the global
model will be devastatingly damaged. When we
increase the proportion of the aggregation clients, it
also means increasing the probability of malicious
local gradients participating in the aggregation pro-
cedure. When the proportion of aggregation clients
exceeds the threshold that the system can tolerate,
the malicious local gradients are used to construct
the global gradient, which causes irreparable damage
to the performance of the global model. By the same
token, if there are too many malicious clients, the
malicious local gradients uploaded by them are more
likely to participate in the aggregation process. As
long as a malicious local gradient is aggregated,
the performance of the global model will be greatly
reduced.

6.5 Efficiency Experiment

In this section, we evaluate the efficiency of CMFL over
FEMNIST and Sentiment140 dataset. Besides, we compare
it with other decentralized FL frameworks.

6.5.1 Experiment Settting

Implementation Detail. In this experiment, we simulate the
data transferring by calculating the transmission time using
Ttransmission = s/r, where s represents the data and r
represents the transmission rate. We let the program process
wait for Ttransmission second when it needs to transmit data
for simulating the data transferring in a real scene. The
maximum number of communication rounds is 600.

Hyper-parameter Setting. In order to exclude the in-
fluence of irrelevant variables, we conduct this evaluation
without considering the Byzantine attacks. The number of
committee clients and training clients is set as 43 and 65.
And the aggregation rate α is set as 40%. We set different
maximum transmission rates for one client: 1Mps, 10Mps,
and 100Mps, and under each transmission rate, we evaluate
the performance of CMFL using wall-clock time, which
includes computation time and communication time.

Comparative Method. We compare the efficiency of
CMFL with three algorithms: typical FL, BrainTorrent [57],
and GossipFL [58].

6.5.2 Result Analysis

Figure 8 shows the result. Noted that the size of AlexNet
(≈ 200M) is much bigger than that of LSTM (≈ 16k), so
the communication time over FEMNIST dataset is much
longer than that over the Sentiment140 dataset. The overall

performance of CMFL is better than the other two decen-
tralized FL frameworks but worse than typical FL. Typical
FL has an overall better performance than CMFL because
the clients do not have to communicate with each other.
It is a centralized framework so the clients just send their
local gradients to a server for aggregation. Never can the
other three decentralized frameworks do that because the
client has to broadcast their local gradients to other clients
for reaching consensus, in which case the transmission of
the local gradients occurs communication overhead. With
the increasing transmission rate, the advantage of typical
FL becomes smaller. The performance of the typical FL is
taken over by CMFL when the transmission is up to 100Mps
over the Sentiment140 dataset. CMFL always has a better
performance than the other two decentralized frameworks,
because it utilized the committee system to reduce the
communication overhead, which is proved in Figure 9. The
clients do not need to broadcast their local gradients to
other clients but send their local gradients to committee
clients. The committee clients can reach a consensus with
lower communication overhead by performing CCP, while
the other two decentralized frameworks must cost higher
communication overhead. Considering the malicious server
in a real scenario, CMFL can achieve both robustness and
efficiency.

6.6 Committee Member Analysis Experiment
6.6.1 Experiment Setting
In this experiment we set α = 40, ω = 30 and vary ϵ to
{10, 20, 30, 40, 50}. By recording the number of malicious
training clients, malicious committee clients and malicious
aggregation clients during the training process, we analyze
the influence of committee members on the performance of
the global model.

6.6.2 Result Analysis
We show the result in Figure 10. Since in each round
the training clients are randomly selected from the non-
committee clients, when ϵ increases, the number of mali-
cious training clients also increases. And with the increase
of ϵ, some malicious clients will inevitably be mixed into
the committee members. Nevertheless, a small number of
miscellaneous malicious clients cannot destroy the entire
committee’s scoring system and influence the committee’s
judgment, which instead improve the performance of the
global model. This is mainly because the scoring system
does not lose the ability to distinguish between the mali-
cious clients and the honest clients since those malicious
clients still receive a score much lower than that of honest
clients. But for the honest clients, they get almost the same
score due to the extreme scores assigned by the malicious
committee clients. In this case, our method is equivalent to
the typical FL method without considering the Byzantine
attack. The typical FL achieves better performance than
CMFL in such a setting, which has shown in Experiment 6.2.
However, if there are too many mixed malicious clients, the
committee’s scoring system will be destroyed and the com-
mittee members will lose the ability to eliminate malicious
local gradients, resulting in a sharp drop in the performance
of the global model.
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(a) FEMNIST-1Mps (b) FEMNIST-10Mps (c) FEMNIST-100Mps

(d) Sentiment140-1Mps (e) Sentiment140-10Mps (f) Sentiment140-100Mps

Fig. 8: Performance of typical FL and three decentralized FL frameworks under different transmission rates over
FEMNIST dataset and Sentiment140 dataset.

(a) Sentiment140-1Mps (b) Sentiment140-10Mps (c) Sentiment140-100Mps

Fig. 9: The total communication time and computation time of typical FL and three decentralized FL frameworks over the
Sentiment140 dataset.

7 CONCLUSION

In this paper, we propose a serverless FL framework un-
der committee mechanism, which can ensure robustness
when considering Byzantine attacks. Besides, we present
the convergence guarantees for our proposed framework.
Motivated by the insight from the theoretical analysis we
design the election and selection strategies, which empower
the model the robustness against both the Byzantine at-
tack and malicious server problem. The experiment results
demonstrate the outperformance of the model over the
typical federated learning and Byzantine-tolerant models,
which further verify the effectiveness and robustness of the
proposed framework.

Currently, the proposed framework mainly ensures the
robustness of the aggregation procedure by detecting the
abnormal local gradients. While in the face of targeted

attacks, such as a backdoor attack, how to design suitable
election and selection strategies with theoretical guarantee
remains an open and worth-exploring topic in the future.
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[50] M. M. Amiri, D. Gündüz, S. R. Kulkarni, and H. V. Poor, “Conver-
gence of update aware device scheduling for federated learning at
the wireless edge,” IEEE Transactions on Wireless Communications,
vol. 20, no. 6, pp. 3643–3658, 2021.

[51] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečný, H. B.
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