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Abstract

Multi-view clustering aims to achieve better accuracy of data clustering by lever-
aging complementary information embedded in multi-view data. How to learn a
consistent clustering-friendly affinity representation matrix is a crucial issue. In
this paper, we propose a consistent affinity representation learning method with
dual low-rank constraints for multi-view subspace clustering. To be specific, for
capturing the high-order correlations and global consensus among views, we col-
lect the subspace representations of all views into a 3-order tensor, which is im-
posed with the tensor singular value decomposition (t-SVD) based tensor nuclear
norm for achieving the low-rank recovery. Thus, we learn a consistent affinity
matrix by fusing multiple subspace representations on the Grassmann manifold
rather than handling them in the Euclidean space. In order to enhance the global
cluster structure in the uniform subspace, the low-rank constraint is imposed on
the consistent affinity matrix. Furthermore, the local geometric structure of the
uniform subspace is encoded via graph regularization. The established model can
be solved via the alternating direction method of multipliers algorithm (ADM-
M). Ultimately, the proposed method is experimentally validated to be superior to
other state-of-the-art clustering algorithms.
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1. Introduction

Nowadays, heterogeneous features of data are increasingly frequent and read-
ily available. Compared to single-view data with monotonous and inadequate in-
formation, multi-view data possess richer and more complete semantic profiles. In
face of this particular data format, traditional single-view representation learning
generally deal with them via feature concatenation. Nevertheless, this approach
cannot utilize the potential correlations between multiple views and leads to in-
ferior performance. To this end, multi-view representation learning [1, 2 3]] has
gained widespread interests.

Although different views of data are available with different statistical infor-
mation, a unified data structure information is shared among them. In a nutshell,
multi-view representation learning aims to incorporate the differences and com-
plementarities from multiple views to learn a consistent representation, which is
used to perform the downstream tasks such as multi-view unsupervised clustering
[4, 15, 6] or multi-view semi-supervised classification [7, |8, |9]. However, in real
scenarios, data are often presented without any label information. Therefore, it
is more interesting and challenging to study how to achieve multi-view represen-
tation learning under unsupervised paradigm. In this paper, we concentrate on
learning a consistent affinity representation matrix from multi-view data lacking
the help of label information, then which is used to execute the clustering task.

Differing from some distance metrics such as Gaussian kernel function and
Cosine similarity function that compute the similarity between samples via prede-
fined calculations, self-representation based subspace learning explores the latent
relationships between data points by dictionary mapping using the data matrix it-
self as the basis vector. Due to its encouraging performance, extensive multi-view
self-representation based subspace clustering approaches have been proposed. For
instance, Cao et al. [[10] adopted the Hilbert Schmidt Independence Criterion (H-
SIC) to enhance the diversity of different views for exploring the complementary
information. Zhang et al. [11] aimed at finding the shared latent representation
and exploring the complementary information among multiple views. Niu et al.
[12] leveraged the low-rank matrix factorization to handle the incomplete multi-
view subspace clustering. Zhang et al. [13] employed the weighted Schatten
p-norm to learn the robust multiple subspace representations. Wang et al. [14]
proposed a deep multi-view subspace clustering method with preserving the glob-
al and local structures. These works are all based on matrix level, which are lim-



ited in mining the high-order correlations between views. Towards this end, some
tensor-oriented methods are developed. The works [[15,/16] extended the low-rank
representation (LRR) [17] to tensor form and recovered the low-rank property of
subspace tensor representation. Cheng et al. [18] learned the low-dimensional
latent tensor space from the heterogeneous and high-dimensional multi-view da-
ta. Chen et al. [19] proposed a generalized nonconvex low-rank tensor norm to
distinguish the meanings of diverse singular values. Wang et al. [20] learned the
task-driving affinity matrix in the tensor space for accurate multi-view clustering.

When dealing with multiple learned representations, all of the above methods
face a common problem, i.e., how to align these representations. Most methods
learn a latent space via minimizing their distances in the Euclidean space or direct-
ly adopt the averaging measure. Nevertheless, these linear approaches perturb the
local structure of data and are vulnerable to noises, which may lead to undesirable
clustering results. Fortunately, some previous works [21}22,23]] have demonstrat-
ed that the fusion of varying subspaces on the Grassmann manifold is more bene-
ficial to protect the vertex connectivity, thus obtaining the unified informative rep-
resentation matrix. In this paper, we propose a consistent affinity representation
learning method on the Grassmann manifold for multi-view subspace clustering,
which uses dual low-rank constraints to achieve double enhancement. Specifical-
ly, we stack all self-representation matrices as a 3-order tensor, which is imposed
with the tensor singular value decomposition (t-SVD) based tensor nuclear norm
(TNN). Thus, the consistency across views is enhanced and the high-order corre-
lations between views are captured. For aligning the self-representation matrices
in the low-rank tensor space, we fuse them on the Grassmann manifold to obtain a
consistent affinity representation matrix. Then, we apply the low-rank constraint
on the consistent affinity matrix to further enhance its cluster structure. Moreover,
the graph regularization is leveraged to encode the local geometric structure in-
side the uniformity subspace. For the convenience of the following description,
the proposed method is referred to as CARLDLC. Fig. [I] figuratively illustrates
the framework of the proposed CARLDLC. Generally, the major contributions of
this paper are as follows:

e To explore the high-order correlations and reinforce the consistency be-
tween different views, we stack multiple self-representation matrices as a
3-order tensor, which is constrained with the t-SVD based TNN to exploit
the low-rank property.

e For learning a well-structured consistent affinity representation matrix, we
align diverse subspace representations in the optimized low-rank tensor s-



pace on the Grassmann manifold. Furthermore, the low-rank constrain-
t is imposed on the learned consistent affinity matrix to enhance its cluster
structure. Meanwhile, we utilize the graph regularization to encode the local
structure of the uniformity subspace.

e An optimization algorithm for the proposed CARLDLC based on the al-
ternating direction method of multipliers algorithm (ADMM) is developed.
We also conduct comprehensive experiments to verify the superiority of
CARLDLC compared to other state-of-the-art clustering algorithms.

In summary, we conclude the motivations for proposing CARLDLC herein.
1) Compared to matrix-based multi-view clustering methods, we want to explore
the high-order correlations between views from a global perspective, namely we
combine multiple subspace representations into a 3-order tensor with low-rank
constraint, thus more effectively excavating the complementary information a-
mong them. 2) Compared to the multi-view clustering methods using linear fu-
sion scheme in the Euclidean space, we want to more robustly integrate various
subspace representations. In light of the effectiveness of robust fusion on the
Grassmann manifold, we merge multiple subspace representations in the low-rank
tensor space into a uniformity affinity representation on the Grassmann manifold.

We organize the rest of this paper as follows. Section [2]briefly reviews several
popular multi-view clustering models and the Grassmann manifold. In Section
some preliminaries are introduced. Sectiondelaborates the proposed CARLDLC.
Experimental results are presented in Section[5| In Section [f] we summarize the

paper.

2. Related Works

2.1. Multi-view Clustering

In recent years, a great deal of multi-view clustering methods have been pro-
posed. The works [24, 25] were designed to learn a consistent spectral embedding
matrix, on which the K-means algorithm was adopted to obtain the clustering re-
sults. However, the works [26, 27 regarded the existence of capacity difference
in diverse views, they learned a view-specific spectral embedding from each view
and instead learned a consensus non-negative embedding, then integrated them
with certain learning manner. Graph learning has received widespread attentions
in multi-view clustering due to its powerful ability to depict relationships between



samples. Some works [28, 29, 130] desired to learn a unified graph matrix by inte-
grating multiple views, which was used as the input of spectral clustering. Consid-
ering that graph-based methods often suffer from high computational complexity,
the works [31, 32] constructed an anchor graph for each view using a small num-
ber of samples, then fused them to match the global consistent graph matrix. For
the same purpose, bipartite graph technology was introduced to approximate the
similarity graphs by [33} 134} [35], which can improve the efficiency of models.
Subspace clustering is an effective technology for discovering clusters in different
subspaces. To explore a discriminate subspace where the data are easily distin-
guishable, researchers have attempted to develop a large variety of proposals. For
instance, the works [10, |11} 136] aimed to learn a latent shared subspace represen-
tation via different regularization terms. Robust integration of various subspace
representations is an important concern for multi-view subspace clustering. Re-
cently, some fusion methods based on Grassmann manifold have been proposed.
For addressing high-dimensional multi-view data, Guo et al. [37] proposed an
improved low-rank model using the matrix tri-factorization on Grassmann man-
ifold. Wang et al. [38] explored the self-representation tensor from multi-view
data tensor, then whose frontal slices were merged on the Grassmann manifold
into a consensus affinity matrix. Rong et al. [23] learned a consistent clustering-
friendly affinity matrix via aligning all subspace representations on the Grassman-
n manifold. Jing et al. [39] fused multiple hypergraph Laplacian matrices on the
Grassmann manifold to obtain a robust affinity graph. To handle the non-linear
structure of multi-view data, the kernel trick was leveraged to tackle this issue in
[13,40]. Deep learning has been demonstrated to deliver excellent capability of
representation learning. Zheng et al. [41] proposed a deep multi-view subspace
learning network with adversarial setting and co-attention mechanism. Lu et al.
[42] merged different views by considering the dynamic contribution of each view
captured by attention mechanism.

2.2. Grassmann manifold

According to [43]], the set consisting of all r-dimensional linear subspaces
embedded in an n-dimensional Euclidean space is termed as Grassmann man-
ifold. An orthonormal matrix M € R™" (M”M = 1) is used to represent
an item on the Grassmann manifold. Moreover, we utilize span(M) to denote
the r-dimensional subspace that is spanned by the column vectors of M. Sup-
pose there are two r-dimensional subspaces span(M®) and span(M®)), their
geodesic distance on the Grassmann manifold can be defined based on a group
of principal angles {6;}/_,. The value range of principal angle ¢, is from 0° to
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360° (or greater values), for the sake of brevity, the smallest angle is adopted. The
distance between two subspaces is formulated as

D7, (MW, M®) = "sin’6;

proj
=r— Z cos® 0, D
i=1
—r—Tr (M(1>M(1)TM(2)M(2)T> ,

Specifically, [43] leverages the one-to-one mapping manner to match the span(-)
operation, i.e., span(M) = MM, then 22:1 cos? 0; can be viewed as the cal-
culation of cosine similarity between span (M) and span(M®). Moreover, it
can be seen that the distance between subspace M(Y) and subspace M(?) reaches
a minimum when they are same.

When the above formula is extended to the fusion of multiple subspaces {M®)}™ |
for learning the integrative subspace M, the following Eq. (2) can be obtained:

Z D, proj )

v=1

proy <{M V= 17

[
NE

(r - TT(M(“)M(”)TMMT)> 2)

v=1

— rm— ZTT( ”)M)MMT>.

It can be seen that each M) is forced to be close to the integrative M, which
maximizes the agreement between varying views.

3. PRELIMINARIES

The meanings of some common notations are presented in Table [I] For a
transparent comprehension of the equations in this paper, we introduce some re-
lated definitions herein. Given tensors A € R™"1*"2%3 gpnd B € R"2*"™x"3 | their
t-product C € R™*"4*"3 jg computed by

C = AxB=bufold(bcirc(A) - bvec(B)). 3)



Table 1: Descriptions of various notations.

| Notations | Descriptions |
‘ M € Rmxm2 ‘ A matrix ‘
| T e Rmxnexns | A tensor |

X(v) c Rd<”> xn

The feature matrix of the v-th view. d*) and n
denote the dimension and the number of samples
of the feature matrix, respectively.

‘ ||M||21 ‘ Thel21 -norm, 1e ||M||21—Z ||M ||2 ‘
‘ | Mo ‘ The co-norm, i.e., [[M|[ = maw; ) ; [M;]. ‘
| Tr(-) | The trace operator |
\ Tijk \ The (4, j, k)-th item of T~ \
‘ T ‘ The i-th frontal slice of T~ ‘
The result of performing fast Fourier transforma-
T tion (FFT) on 7 along the third dimension, i.e.,
f T¢=fft(T,[],3). Moreover, T is rederived
via the inverse FFT, i.e., T = if ft(T,[],3).
70 ghs) @)
T2 0 AN uC)
beire(T) beire(T) = i ) _ :
7'(."3) 7'(7;3—1) . 7'.(1)
bvec(T) bvee(T) = |TW; T, ..., 7"
7O
7
bdiag(T) bdiag(T) =

T(HS)




The operator bv fold(-) can be viewed as the inverse operation of bvec(-), i.e.,
bu fold(bvec(A)) = \A. For tensor A, it is orthogonal if it satisfies

A« A=Ax Al =T, 4)

where Z € R™*"™1*"2 ig an identity tensor, whose first frontal slice is a ny X n;
identity matrix and the other frontal slices are all zeros.

Definition 1. (-SVD) For tensor X € R"'*"2*"3_ jt5 t-SVD is defined as

X=UxDxV"T, (5)

where both U € R™*"1*™3 and Y € R™2*"2*" are orthogonal, D € R™*"2x"3
is an f-diagonal tensor, whose each frontal slice is a diagonal matrix.

Definition 2. (#-SVD based TNN ) According to [44)], the t-SVD based TNN of
X is defined as

min{ni,n2} ng

1xle= > Y DY), ©6)
i=1 j=1
where DY is gained by XY = U 5 DY) YO

4. The Proposed Method

4.1. Problem Formulation

For a data feature matrix X € R%*™, it is well known that the self-representation
based subspace learning is formulated as X = XZ + E, where Z € R™"™ and
E € R%" denote the self-representation matrix and error matrix, respectively.
Specifically, Z also depicts the underlying relationships of data points. In multi-
view scenarios, we want to explore the self-representation matrix Z( for the v-th
view on the basis of the above formula. Thus, inspired by the works [15, 16], we
reorganize multiple subspace matrices {Z"}™ , into a 3-order tensor Z, which
is imposed with the t-SVD based TNN to capture the high-order correlation and
global consensus between views. B

After optimization, a low-rank representation tensor Z is obtained, which can-
not be directly employed for implementing clustering task. Therefore, how to
acquire a unified affinity representation matrix A is posed ahead of us. With re-
spect to existing works, there are two common ways to get the consistent affinity
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Figure 1: The flowchart of the proposed CARLDLC. {Z(®)}™ . denote the sub-
space representations derived by the original multi-view data {X ()}, which
are assembled into a 3-order tensor. The t-SVD based TNN is adopted to recover
the low-rank component. Thus, we integrate multiple subspace representation-
s to obtain the consistent affinity matrix A on the Grassmann manifold. While
optimizing the low-rank tensor Z and the consistent affinity matrix A, the local

geometric structure of the uniformity subspace is also encoded.

matrix. The first way is to average all subspace representations {Z™}™ , i..,
A=L%" (20 + Z(") /2. The second way is to fuse {Z(")}™  in a weight-
ed manner to obtain a consistent affinity matrix, i.e., solving the minimization
problem mina w > o w®||Z®) — A2 + A||w||3, where w is weight vector
composed of the weight coefficients {w)}™ . Both of these approaches are lin-
ear solutions in Euclidean space, which may destroy the local structure of data
and be susceptible to noises. Thus, we attempt to fuse multiple subspace repre-
sentations {Z(*)}™ | into a consistent subspace representation on the Grassmann
manifold. From Eq. (2), we can realize that the alignment and fusion of multiple
subspaces on the Grassmann manifold are achieved by minimizing the geometric
distance between the consistent basis matrix and the view-specific basis matri-
ces, which has been illustrated to be an effective and robust fusion method in the
existing works [21}, 22} 23]].

Assuming that the consistent subspace is spanned by the basis matrix M, then
the affinity between samples in the consistent subspace is given by A = MM
Likewise, supposing that the v-th subspace is spanned based on the basis matrix
M), the affinity between samples in the v-th subspace is given by Z(®) +Z®)" =
MOMOT, According to Eq. (2), the integration of multiple subspaces is trans-



formed into the following problem:
] _ (v) Ok )
min rm E_l Tr ((Z +Z"Y )A). (7

For the consensus affinity matrix A, we want to further enhance its cluster struc-
ture, so the matrix nuclear norm is employed to constrain it. Meanwhile, rm is a
constant and can be discarded, then the optimization problem with respect to A is
rewritten as

in — . (v) ()"
min ;Tr <(Z +7Z )A) + [|A]l.. 3)

Furthermore, we take inspiration from graph learning theory [45) 46] and are
concerned with a basic fact that no matter in any view, two closed data points
have high similarity, i.e., the data locality. In other words, it is expected that the
subspace representations z§”> and ng) that are located close together should have

a large similarity value A;;. Then, we have

v v 1 v v
SOl 2 BAy = STr(Z Lz, ©)
(]

The Laplacian matrix L is calculated by L = D — (A + AT)/2, D denotes a
diagonal matrix and is defined as D;; = ) j(AJFQAT )ij-

For the sake of learning a consistent clustering-friendly affinity matrix, we

present the final objective function of the proposed CARLDLC as follows

; . W1.7®TY _ (v) ()T
erlElgnlem;(aTr(z LZO") = BTr((Z) + Z7)A))

+ A+ AE] 2,
S.t. X(U) = X(U)Z(U) + E(v)7
Z2=90 (Z(l)’ Z(Q), o Z(m)) :
E = [EY;E®;.  EM™],

(10)

where ®(-) denotes the operation of stacking multiple matrices into a 3-order ten-
sor. E is constrained by [y ;-norm, which aims to resist the impact of sample-
specific noises. «, (3, 7, and A are four tradeoff parameters used to balance the
five terms. It is worth emphasizing that the proposed CARLDLC enhances the

10



global consistency, exploits the high-order correlations between views via low-
rank tensor optimization. Then, multiple subspace representations are merged
to obtain the consistent affinity matrix on the Grassmann manifold. Meanwhile,
we attach importance to preserving the local structure within the uniformity sub-
space. These three considerations ensure that the proposed CARLDLC achieves
excellent clustering results.

4.2. Optimization Process

We update each variable of Eq. based on ADMM. For tackling the insep-
arability of variable Z and A, the auxiliary variables H and G are introduced.
Thus, the augmented Lagrangian function of Eq. is written as

LH{ZWV B H A G)
= [l + 0 Y THEOLZOT) — 5T (20 207)A)

v=1 v=1

+3 <<J<v>, X® _ XW7z® gy 4 gIIX(”) _ X070 _ E(”)H%> (11)
v=1

(K. Z = H) + 512 = H[E+IGI| + A|B]20 + (M, A - G)

W
+La-alp

where {J™}™ IC, and M are Lagrange multipliers, y is the penalty parame-

ter. (-,-) denotes the inner product operation. The ways to update variables are
equivalent to solving several subproblems as follows.

Z()-Subproblem: When keeping the related items, the subproblem of Z(*)
becomes the following form:

Z®)" = argmin aTr(ZWLZ") — BTr((Z™) + Z™")A)
Z ()

F (IO XO - XOZ0) _g®) 4 ‘—;||X<”> —XWZ® _g®|2 (12)

F(K®, 20— g 4 g!lz(“) _HO2.

Setting the partial derivative with respect to Z(*) to zero, we get

7™ (20L) + (uI + pX®@"XZ®) = g(A + AT)

13
—K® 4 1 XOTXO _  XOTE® ¢ x0T 30 4 g ©), (13)
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It can been observed that Eq. conforms to the form of Sylvester equation
[47], i.e., AZ®) + ZB = C. Then the function lyap(-) in MATLAB can be
used to obtain the solution of Z).

E-Subproblem: Discarding the items irrelevant to E, the E subproblem is
expressed as

E* = argmin \||El[2; + Z (I, X0 — X0z — gy
E

v=1

+gHX(”) _xWgz®) _ g H%)

m (14)
: v v v v 1 v
= arg min \||E||z; + g Y IE® - (X© - XWZ0) 1 ;J< NI
E
v=1
= argmin \||E||21 + gHE —F||3.
E
For convenience, we denote F(*) = X*) —X(Z") 4L J) and F = [F); ... ;F(™)].
According to [17], we update E by
IF.jll2—2 N
B, = Tk F Bl >4 (15)
’ 0, otherwise.

A-Subproblem: Fixing {Z(“) m ., E, H, and G, we obtain the subproblem
with respect to A.

A" = arg minz (aTr(Z(”)LZ(”)T) — BT?"((Z(“) + Z(”)T)A)>
v=1

A (16)

+ (M, A—-G)+5llA - GlJ5.

Taking the derivative of A and setting its value to zero, the updating approach is
as follows:

A* — (Z (az(v)Tz(v) + ﬁ(Z(”) + Z(W)T)> + uG — M) /. a7

v=1

‘H-Subproblem: Ignoring the terms unrelated to H, the ‘H subproblem be-
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comes

H = argmin ||| + (K. Z = ) + 51|12 - HI;

H

_ . H L2

= argmin || H]| + 5|12 - H + K12 (18)
H Jz

. 1

= argmin|[H|o + SlIH — (2 + K[}

H Iz

Before optimizing H, we take a cue from the work [[16] and rotate # from n x
nxmton xm x n. Fig. P]illustrates the approach of tensor rotation. The rotation
is necessary. According the definition of t-SVD based tensor nuclear norm, after
rotation, the low-rank property across views can be captured, that is, the elements
at the same position of varying subspace representations tend to coincide, thus
exploring the high-order correlations.

Inspired by [48], we update H by the tensor tubal-shrinkage operator

H =U%T (D) V", (19)

where T ,,/,(D) = D x F. F denotes an f-diagonal tensor, the calculation
method of its diagonal element of the j-th frontal slice is

Filiyi,g) = max{l — %, 0}. (20)

n*n*m n*m*n

Figure 2: Illustration of tensor rotation. The dimensions of the tensor before and
after rotation are n X n X m and n X m X n, respectively. The position of the red
line before and after rotation graphically demonstrates how the tensor rotates.

G-Subproblem: When the terms associated with G are kept, the following
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subproblem is gained:
G* = argmin7||G|. + (M, A - G) + 5||A - G}
G

. 7] 1
= arg min || G[[. + [|A = G + —M]|; @1
G %

. o’ 1
= arg miny||G||, + §|]G — (A + —M)HzF
G [

According to [49], Eq. (21)) can be updated via the singular value threshold algo-
rithm, i.e.,
G =UxS8,,,(Z)«V", (22)

where U, 3, and V are obtained by implementing SVD on the matrix (A + ;%M)
The shrinkage operator S,/,(X) is defined as S, /,(X) = max(3 — v/u,0) +
min(3 + v/, 0).

Update the Lagrangian multipliers J*), /C, M, and penalty parameter /::

Jwr — g + M(X(U) _ Xz _ E(”));
K'=K+u2Z-K);
M* = M + (A — G);

pr = min(w * i, thnaz)-

(23)

In Algorithm |1, we summarize the outline of the proposed CARLDLC. A-
mong these subproblems, the updating approaches of Z(*), E, , and G result in
high computational complexity. To be specific, updating Z(*) by solving Sylvester
equation takes O(n?). Hence, updating the set {Z}™ | needs O(mn?). For the
subproblem of E, it costs O(mn?). In the optimization process of ‘H, FFT, in-
verse FFT, and SVD operations are used, which take O(m?*n? + mn?log(n)) in
total. For solving G, the SVD is performed, so O(n?) is costed. Let ¢ be the
number of iterations, the computational complexity of the proposed CARLDLC
is O(t(mn?log(n) + (m + 1)n® + (m* + m)n?)).

4.3. Discussion

Compared with multi-view clustering methods MVLDAM [38] and LRTG
[S0] related to the proposed CARLDLC, there are several significant differences
between them.

1) MVLDAM vs CARLDLC:
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Table 2: Statistics of six datasets.

Dataset Samples Views Clusters Features
BBCsports 544 2 5 3,183/3,203
Citeseer 3,312 2 6 3,703/3,312
MSRC 210 6 7 1,302/48/512/100/256/210
UCI 2,000 3 10 240/76/6
WikipediaArticles 693 2 10 128/10
Youtube 2,000 6 10 2,000/1,024/64/512/64/647

Algorithm 1 Consistent Affinity Representation Learning with Dual Low-rank
Constraints for Multi-view Subspace Clustering

Input: X = {X(l), X ,X(m)}, X® ¢ RIxn o 3, v, A
Output: Consistent affinity representation matrix A.
1: Initialize Zg = Ho =Ko =0,Eg =0, =0, My = 0,w =2, = 1075,
105 flmaz = 101, k = 0.
2: while not convergent do
forv=1:m do
Update Zgﬁl by Eq. (13));
end for
Update E; ;1 by Eq. (13);
Update A1 by Eq. (17);
Update .1 by Eq. (19);
Update Gy by Eq. (22));
10:  Update J,(gjzl, i1, My, and i1 by Eq. 23);
11:  Check the convergence conditions:
[X® = XOZE), — B |l <,
1Zi) — Bl < e,
[[Aks1 — Gryilloo < e
122 k=k+1;
13: end while
14: return Matrix A;

e A
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e Different construction ways of subspace representation tensor. Given a
multi-view dataset { X }™  MVLDAM reorganizes it to a multi-view da-
ta tensor X € R>™™ where d = Y. d). Then MVLDAM explores
the subspace representation tensor C € R™ "™ via ming ||X — X * C||%.
However, the proposed CARLDLC first learns the view-specific subspace
representation Z) by X(*) = X®Z®) + E®) then assembles {Z®}7
into a third-order tensor Z2 € R™*"*™,

e Different selections of tensor nuclear norm. In order to preserve the low-
rank property of subspace representation tensor, MVLDAM adopts the defi-
nition of || X ||7nn = (1/n3) D02, ||X§f)||*, where || - ||, denotes the nucle-
ar norm of a matrix. Nevertheless, CARLDLC utilizes t-SVD based tensor
nuclear norm, i.e., || X ||, = S mininme} PR \’Dgcj) (i,7)|, where Dy is ob-

=1
tained via performing the t-SVD on X.

e Different constraints on the consistent affinity matrix. MVLDAM imposes
[1-norm on the consistent affinity matrix W to enforce its information ca-
pability, while CARLDLC constrains the consensus affinity matrix A with
matrix nuclear norm. The features of the same clusters are similar, while
the features of diverse clusters are variable. Therefore, it is beneficial to use
the low-rank constraint to obtain a clustering-driven affinity matrix.

e Different dispositions of the error matrix. Learning subspace representa-
tions in either tensor or matrix forms results in an inherent bias tensor/matrix
that portrays noise and outliers. Imposing a certain regularization constrain-
t on this bias tensor/matrix is conducive to enhancing the robustness of
models. MVLDAM does not take into account the effect of bias tensor,
while CARLDLC uses the [ ;-norm constraint on the bias matrix E, which
strengthens its robustness.

e Different treatments of local structure. Discovering the hidden local struc-
ture in data has positive significance for boosting clustering performance,
so CARLDLC leverages the graph regularization Tr(ZLZ®") to pre-
seve the locality of data features. However, MVLDAM ignores it.

2) LRTG vs CARLDLC:

e Different learning methods for the consistent affinity matrix A. LRTG di-
rectly explores the graph embedding A from multiple subspace represen-
tations {Z(}™ |, which constructs the consistent affinity matrix A mainly
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from a perspective of locality. While CARLDLC first considers robustly
integrating multiple subspace representations {Z()}™ | to initially obtain a
consensus affinity representation A, thus imposes the low-rank constraint
on it to enhance the global cluster structures. Furthermore, we also attach
importance to the data locality, and use the second term in Eq. to
encode the local structures within the uniform subspace. Alternatively, an-
other perspective on the role of the second term is that it can smooth the
elements in A and boost its information characterization capability [10].

e Different ways to capture the low-rank property. LRTG recovers a low-rank
tensor Z via Tucker decomposition. While CARLDLC explores the low-
rank property of tensor Z using the t-SVD based tensor nuclear norm.

S. Experiments

5.1. Datasets

We choose six publicly real-world datasets to investigate the performance of
the proposed CARLDLC, their detailed statistics are introduced as follows. Table
also shows the details of these datasets.

BBCsports E] is comprised of 544 documents with 5 themes about sports,
which are excerpted from BBC website, each news is represented by 2 features.

Citeseer contains 3,312 documents derived from 6 categories. There are two
kinds of feature representations in this dataset: content feature and citation feature.

MSRC E] consists of 210 images from 7 categories such as cars, trees, and
cows, etc. Each image has 6 feature representations: SIFT feature, LBP feature,
CM feature, HOG feature, GIST feature, and CENTRIST feature.

UCI [51] includes 2,000 handwritten digit images from 0 to 9. Three features
are extracted from each image: PIX feature, FOU feature, and MOR feature.

WikipediaArticlesis an article dataset collected and compiled by the Wikipedi-
a editors. In the experiments, each sample is represented by 2 views.

Youtube ﬂ is a video dataset containing 2,000 samples with 10 categories,
each sample has six types of features, including HOG feature, CH feature, HME
feature, VS feature, MFCC feature, and SS feature.

'http://mlg.ucd.ie/datasets/segment.html
Zhttp://research.microsoft.com/en-us/projects/objectclassrecognition/
3http://lig-membres.imag.fr/grimal/data.html
“http://archive.ics.uci.edu/ml/datasets
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5.2. Baselines and Evaluation Metrics

We select a conventional single-view clustering algorithm and ten multi-view
clustering methods as the baselines, the details of them are provided as follows.

K-means stitches together multiple views to form the available feature matrix,
on which it is performed to get the clustering results.

GMC [52] fused the graph matrices of all views to construct the unified graph
matrix with a certain number of connected components.

SM?SC [53]] explored the essential components from view-specific represen-
tations that are aligned with the consistent subspace representation.

LMVSC [31] learned multiple anchor graphs for each view, then an efficient
fusion method was developed to integrate them.

MCDCEF [54] proposed a multi-layer concept factorization to capture the hi-
erarchical information of multi-view data.

LTMSC [15] aimed at recovering a low-rank tensor space using the sum of
nuclear norms (SNN) to constrain the self-representation tensor.

t-SVD-MSC [16] leveraged t-SVD based TNN to learn a low-rank subspace
representation tensor.

HLR-M?VS [7] highlighted the protection of the local structure of data while
learning a low-rank tensor space.

MVLDAM [38] directly explored the subspace representation tensor from
multi-view data tensor, then fused multiple subspace representations into a com-
mon affinity matrix on the Grassmann manifold.

CGL [55] respectively learned affinity matrices using the spectral embedding
matrices of multiple features, which are stacked into a 3-order tensor with low-
rank constraint.

CoMSC [56] learned the robust representations of multiple views via the
eigendecomposition, then a consensus subspace representation was calculated
based on them.

We employ six evaluation metrics to evaluate the clustering results, including
Accuaracy (ACC), Normalized Mutual Information (NMI), Purity, Adjusted Rand
Index (ARI), F-score, Precision. For ARI, the range of value is [-1, 1], as for the
other metrics, their values range in [0, 1]. Furthermore, higher values of the six
evaluation metrics mean better performance. Considering the impact of stability,
each round of comparison experiment is run ten times, and we document the mean
and variance.
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5.3. Experimental Results

Tables [3] {4 [5] [61 report the clustering results for all compared algorithms
on six challenging datasets, and the numbers in bold indicate the highest values
on each evaluation metric. We discuss the observations revealed by these statistics
as follows:

e K-means performs poorly on the concatenation features in most cases, main-
ly because stitching together multi-view data both destroys the semantic
information of individual view and renders the synthetic data more compli-
cated, making it impossible for K-means to clearly partition the data. On
the contrary, the majority of multi-view approaches achieve good perfor-
mance owing to their ability to leverage the complementary information of
multi-view data. However, there are exceptions occurring. For example, on
the WikipediaArticles dataset, K-means gains favorable clustering results
and outperforms some multi-view methods including GMC, MCDCEF, and
LMVSC. For investigating the reason, we run K-means on the first view
with ACC and NMI of 19.9% and 6.3%, respectively, and run it on the sec-
ond view with ACC and NMI of 56.4% and 54.1%, respectively. It can be
seen that the semantic information hidden in the two views in the dataset d-
iffers significantly, which may seriously interfere with the view fusion effect
of some multi-view methods.

Table 3: Comparison of clustering results (%) on the BBCsports dataset.
Methods ACC NMI Purity ARI F-score  Precision

K-means  37.5+4.5 54449 392452 23+32 39.0+2.1 249423
GMC 81.0£0.0 72.3£0.0 84.3£0.0 72.2£0.0 79.4£0.0 72.7£0.0
SM2SC 90.8+0.0 82.2+0.0 90.8+£0.0 85.5+£0.0 89.0+0.0 88.7+0.0
LMVSC  89.3+0.0 81.4+0.0 89.3+0.0 84.7£0.0 88.4+0.0 86.8+0.0
MCDCF  94.54+4.1 88.3+23 95.34+2.1 90.7+£2.5 9294+14 92.1+1.9
LTMSC 68.2+0.0 50.44+0.0 72.840.0 47.0+0.0 61.2+0.0 54.44+0.0
t-SVD-MSC  94.9+£0.0 85.3£0.0 94.9£0.0 85.4=£0.0 88.9£0.0 87.1£0.0
HLR-M2VS 94.940.0 85.4+0.0 94.9+0.0 86.44+0.0 89.64+-0.0 89.3+0.0
MVLDAM 90.3£0.0 80.5£0.0 90.3£0.0 74.9£0.0 81.3£0.0 75.9£0.0
CGL 93.6+0.0 86.5+0.0 93.6+0.0 87.840.0 90.7+0.0 93.0+0.0
CoMSC 90.8+0.0 81.8+£0.0 90.8+£0.0 85.4+0.0 88.9+0.0 89.0+0.0
CARLDLC 97.1£0.0 90.1£0.0 97.1£0.0 91.8£0.0 93.8£0.0 92.2+0.0
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Table 4: Comparison of clustering results (%) on the Citeseer dataset.

Methods ACC NMI Purity ARI F-score  Precision
K-means  36.2+3.0 14.143.3 37.2£3.8 11.5£3.3 31.94£2.8 24.9+£22
GMC 21.7£0.0 0.840.0 21.8+£0.0 0.1£0.0 30.3£0.0 17.9+0.0
SM?SC 52.54£0.0 28.7£0.0 57.8+£0.0 25.1£0.0 39.4+0.0 37.0+0.0
LMVSC 459400 21.5£0.0 48.1£0.0 17.3£0.0 32.8+£0.0 31.2+0.0
MCDCF  58942.1 31.1£1.9 59.2+2.0 30.6£1.5 455£1.8 37.9+2.5
LTMSC  62.34+0.0 35.1£0.0 64.8£0.0 35.0£0.0 46.4+0.0 47.1+0.0
t-SVD-MSC 41.0£0.0 18.5+0.0 43.3+0.0 13.940.0 29.7+0.0 30.7£0.0
HLR-M?VS 58.3+0.0 35.1+0.0 61.840.0 32.7+0.0 44.3+0.0 45.840.0
MVLDAM 22.0£0.0 1.0£0.0 22.24+0.0 0.2+£0.0 30.3+0.0 17.94+0.0
CGL 37.0+£0.0 13.840.0 40.5£0.0 11.9+£0.0 28.5£0.0 27.0+0.0
CoMSC  44.7£0.0 19.8+£0.0 46.9+0.0 17.8+£0.0 32.3£0.0 32.6+0.0
CARLDLC 67.840.0 41.4+0.0 70.3+£0.0 42.8+0.0 53.0+£0.0 53.3+0.0
Table 5: Comparison of clustering results (%) on the MSRC dataset.

Methods ACC NMI Purity ARI F-score  Precision
K-means  45.04+3.2 38.1+£24 47.6+2.8 24.3+2.6 37.4+2.2 30.1£2.3
GMC 89.5+0.0 81.6+0.0 89.5+0.0 76.7+£0.0 80.0+£0.0 78.6+0.0
SM2SC 91.4+14 823+1.1 914+1.2 81.1+£1.5 83.7£1.0 83.7£1.8
LMVSC  82.4£0.0 71.3+£0.0 82.44+0.0 65.1+£0.0 70.1+£0.0 68.14+0.0
MCDCF  85.6+0.8 77.7+0.8 85.6+0.7 70.8+£0.6 75.0+0.5 72.3+0.8
LTMSC 83.4£0.1 74.940.0 83.44+0.1 68.8+0.1 73.2+0.1 71.9+£0.1
t-SVD-MSC 98.1+0.0 96.0+0.0 98.1+0.0 95.5+0.0 96.2+0.0 96.3+£0.0
HLR-M?*VS 99.1+0.0 97.8+0.0 99.1+0.0 97.84+0.0 98.1+£0.0 98.0+0.0
MVLDAM 87.1£0.0 77.540.0 87.1+£0.0 73.1+£0.0 76.8+£0.0 76.0+0.0
CGL 76.1£0.2 68.5£0.2 76.1£0.2 59.3£0.2 65.1£0.2 63.6+0.3
CoMSC  76.7£0.0 63.4£0.0 76.7£0.0 54.1£0.0 60.6£0.0 59.8+0.0
CARLDLC 1.0£0.0 1.0+0.0 1.0+0.0 1.0+0.0 1.0+£0.0 1.0+0.0
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Table 6: Comparison of clustering results (%) on the UCI dataset.

Methods ACC NMI Purity ARI F-score  Precision
K-means  38.8+£1.0 46.6+£0.3 44.2+0.8 31.4+£0.1 38.9+0.2 35.4£04
GMC 74.840.0 80.94+0.0 77.44+0.0 71.0+0.0 74.1+0.0 68.04+0.0
SM2SC 84.2+0.0 79.9+0.0 84.2+0.0 74.9+0.0 77.4+0.0 77.2+£0.0
LMVSC  82.5+0.0 73.1+0.0 82.5+0.0 66.2+0.0 69.6+£0.0 69.0+0.0
MCDCF  73.7£1.2 75.8+1.1 73.7+1.5 643+14 68.0+1.2 64.8+1.3
LTMSC 79.8+0.1 76.7+1.0 81.5+0.1 71.841.4 74.6+1.3 73.3+1.2
t-SVD-MSC  95.54+0.0 93.2+0.0 95.5+0.0 92.4+0.0 93.2+0.0 93.0+0.0
HLR-M?VS 85.64+0.1 87.0+0.1 86.2+0.1 81.94+0.1 83.7+0.1 82.04+0.4
MVLDAM 959+0.0 91.3£0.0 95.9+0.0 91.0£0.0 91.9£0.0 91.8+£0.0
CGL 84.3£1.7 90.5£1.6 88.6+1.8 83.2+2.8 85.0£2.5 78.94+2.8
CoMSC  77.8£0.0 78.4+£0.0 81.6£0.0 69.3£0.0 72.6£0.0 66.9£+0.0
CARLDLC 97.94+0.0 95.0+0.0 97.9+0.0 95.3+0.0 95.8+0.0 95.7+0.0

Table 7: Comparison of clustering results (%) on the WikipediaArticles dataset.

Methods ACC NMI Purity ARI F-score  Precision
K-means  54.7+0.0 51.5+0.0 58.6+0.0 39.0+0.0 45.8+0.0 45.0+0.0
GMC 449£0.0 36.1£0.0 48.2+0.0 14.5+0.0 28.44+0.0 19.1+0.0
SM?SC 55.1+£0.0 50.8+0.0 59.3£0.0 40.7£0.0 47.0£0.0 48.5+0.0
LMVSC  55.6£0.0 47.5£0.0 57.0+0.0 33.1+£0.0 41.0+0.0 38.0+0.0
MCDCF  47.3+£2.7 35.1£19 50.0£1.4 245+13 32.6+1.1 329+1.2
LTMSC  53.1£0.3 49.5£0.5 57.5£0.0 40.7£0.0 47.1£0.0 48.1£0.0
t-SVD-MSC 55.6+0.1 48.4+0.2 58.0£0.2 40.8+0.1 47.1+0.1 48.0%0.1
HLR-M?VS 54.64+0.0 48.2+0.0 57.4+0.0 40.840.0 47.1+0.0 47.8+0.0
MVLDAM 54.7£0.0 47.1£0.0 57.7£0.0 37.7+£0.0 44.24+0.0 46.24+0.0
CGL 54.2+0.1 49.8+£0.0 59.4+£0.1 37.1£0.1 44.1£0.1 43.2£0.1
CoMSC  21.1+£0.0 7.2£0.0 23.2+0.0 2.94+0.0 13.1£0.0 13.6£0.0
CARLDLC 57.3£0.2 53.3£0.2 61.3+0.1 43.3+0.2 49.54+0.2 49.7+0.2

21



Table 8: Comparison of clustering results (%) on the Youtube dataset.

Methods ACC NMI Purity ARI F-score  Precision

K-means  24.6£1.2 15.24+04 27.9£1.0 82+0.6 19.5£0.5 15.840.5
GMC 11.7£0.0 2.0+£0.0 12.1+£0.0 0.0£0.0 18.1+£0.0 10.0+0.0
SM2SC 30.6£0.1 18.1£0.1 34.1£0.1 11.1£0.1 20.1£0.1 19.8£0.1
LMVSC  27.2+0.0 14.8+0.0 29.2+0.0 7.9+£0.0 17.3+£0.0 16.9+£0.0
MCDCF 17.4+1.2 82+09 21.1+£1.0 3.2+13 13.7+£1.3 12.6+1.0
LTMSC 30.0+0.1 18.4+0.1 32.1+0.0 11.2+0.1 20.3+£0.1 19.8+0.1
t-SVD-MSC  26.3£1.7 16.2£0.9 334£1.1 9.8+0.5 19.3£0.5 20.4£0.5
HLR-M?VS  30.6+0.0 17.94£0.0 32.3+0.0 11.24£0.0 20.24+0.0 19.8+0.0
MVLDAM 28.1+0.0 14.6£0.0 29.44+0.0 8.6+£0.0 19.2+0.0 16.5+0.0
CGL 32.94+0.1 19.7+£0.1 35.44+0.1 12.5+0.1 21.5+0.1 20.94+0.0
CoMSC 24.6+0.0 10.4£0.0 26.0£0.0 5.9+0.0 15.44+0.0 15.1+0.0
CARLDLC 33.0+£0.1 21.4+0.1 36.2+0.2 14.2+0.1 23.2+0.1 22.1+0.1

e The proposed CARLDLC leads in performance on almost all datasets. Fur-
thermore, the improvements are significant on some datasets. For example,
on the Citeseer dataset, CARLDLC improves over the next best method
LTMSC by 5.5%, 6.3%, 5.5%, 7.8%, 6.6%, and 6.2% on the six evaluation
metrics. Even more, perfect clustering results are achieved on the MSRC
dataset. There are a number of reasons for the leading situation. Compared
to the matrix-based methods GMC, SM?SC, LMVSC, and MCDCF, which
are dedicated to learning a shared affinity matrix or a low-dimensional rep-
resentation matrix from varying views in the Euclidean space, CARLDL-
C fetches the high-order correlations through low-rank tensor optimization,
and merges different views on the Grassmann manifold to obtain the consis-
tent affinity matrix, which is further imposed with the low-rank constraint
for strengthening the cluster structure. Thus, CARLDLC achieves better
performance. In comparison to the tensor-based methods LTMSC, t-SVD-
MSC, HLR-M?VS, and CGL which gain the final affinity matrix via aver-
aging all slices in the optimized low-rank tensor, CARLDLC fuses multiple
slices of the learned low-rank tensor on the Grassmann manifold, and pays
attention to encoding the local structure of the uniformity subspace. Given
these measures, CARLDLC performs better. As for MVLDAM, which is
also based on the low-rank tensor factorization and Grassmann manifold,
we have explained their differences in Subsection 4.3] From the clustering
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results, we can see that the proposed CARLDLC outperforms MVLDAM.

With the help of t-SNE technology, we provide visualizations of clustering
results of ten multi-view clustering methods on the UCI dataset, which are
presented in Fig. [3] Data points of different clusters are rendered in different
colors. It can be seen that the clusters divided by GMC, LMVSC, MVDCE,
LTMSC, HLR-M?VS, and CoMSC are heavily intermingled with instances
from other clusters, CGL does not divide enough ten clusters, which all
demonstrate that the clustering results are unsatisfactory. Nonetheless, the
clusters segmented by t-SVD-MSC, MVLDAM, and CARLDLC are rela-
tively purity, illustrating the clustering results are superior. The situations
can also be confirmed by the numerical results in Table[6]

We visualize varying affinity matrices learned by nine multi-view clustering
algorithms on the BBCsports dataset in Fig. Al A good affinity matrix
can well profile the cluster structure of samples, i.e., the diagonal-block
structures in the visualization. It can be observed that the methods GMC,
LTMSC, t-SVD-MSC, HLR-M?VS, MVLDAM, and CGL do not portray
the diagonal-block structures clearly enough. On the contrary, SM?SC and
CoMSC can learn the diagonal-block structures well, but do not sufficiently
suppress the elements at non-diagonal-block positions, indicating the lack
of protection of the local structures. Fortunately, the proposed CARLDLC
can perceive the diagonal-block structures well while suppressing elements
at other locations.

In addition, the visualizations of each self-representation matrix Z) and
the consistent affinity matrix A are presented in Fig. [5] which are obtained
after CARLDLC converging on UCI dataset. It can be seen that the image
corresponding to the consistent affinity matrix A most clearly depict the
diagonal-block structures of data. Accordingly, it can be inferred that A
as the input of spectral clustering algorithm is able to obtain the optimal
clustering results.

5.4. Ablation Experiments

For examining the roles played by encoding the local structure of the unifor-
mity subspace and integrating varying views on the Grassmann manifold, we per-
form some ablation experiments to verify. Table [J]illustrates the performance of
the proposed CARLDLC and its three variants for ACC and NMI on six datasets.
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Figure 3: A visualization comparison of ten clustering methods via t-SNE on the
UCI dataset.

CARLDLC-OL represents the variant that does not incorporate the local struc-
ture, i.e., discarding the second item of the objective function Eq. (I0). In the
case that we do not align various views on the Grassmann manifold, but direct-
ly learn the consistent affinity matrix from multiple self-representation matrices,
i.e., abandoning the third term in Eq. (10), the proposed CARLDLC devolves to
CARLDLC-OG. Moreover, we further undertake an interesting comparison ex-
periment, namely the linear fusion manner of multiple subspace representations
in the Euclidean space is used to substitute the fusion on the Grassmann manifold.
The objective function of new model is rewritten as

' Y O /08 ) - @) 1170 _ A2
g [121e + 32 (7@ VL) + 3 w2 - Al
+yI[Alls + ME[21 + BlIwll;

s.t. X0 =Xz 4 BY w = {0®}r,

Z = @ (Z(1)7 Z(2)7 ey Z(m)) )

E=[EY;E®;.. ;E™],

(24)

which is abbreviated as CARLDLC-LF. From the Eq. (2) and Eq. (24), we can
observe that the fusion on the Grassmann manifold aligns basis vectors in the u-
niform subspace with the basis vectors in varying subspaces, while the fusion in
the Euclidean space narrows the distances between all elements in the consistent
affinity representation and all subspace representations, the former fusion method
is more robust to noise than the latter [21]]. It can be observed that CARLDLC
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Figure 4: Comparison of varying affinity matrices learned by nine multi-view
clustering algorithms on BBCsports dataset.
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Figure 5: Visualizations of affinity matrices of different views and the consistent
subspace on UCI dataset.

realizes the best performance, which confirms that the preservation of local struc-
ture and the fusion on Grassmann manifold are necessary and valid. Notably, If
we perform the averaging fusion for multiple subspace representations {Z")}™ |
to obtain the consistent affinity representation A, i.e., removing the second, the
third, and the fourth terms in Eq. (10), the proposed CARLDLC degenerates to
t-SVD-MSC model. Thus, we can see that CARLDLC outperforms t-SVD-MSC

on six datasets from Tables [3 4] 3 [6}

Table 9: Comparison of clustering results (ACC/NMI, %) of CARLDLC and its

three variants.
Datasets BBCsports  Citeseer ~ MSRC UucCl WikipediaArticles  Youtube

CARLDLC-OL | 95.6/86.3 67.5/40.1 98.6/97.1 94.3/90.0 34.6/18.6 32.3/18.2
CARLDLC-OG | 95.8/86.6 42.0/18.2 96.7/92.4 93.7/93.9 52.8/44.6 30.7/19.0
CARLDLC-LF | 91.9/80.9 53.8/27.1 54.3/41.9 95.0/90.1 55.3/49.0 31.0/17.1

CARLDLC 97.1/90.1 67.8/41.4 1.0/1.0 97.9/95.0 57.3/53.3 33.0/21.4

5.5. Model Analysis

(1) Parameter selection: In the objective function Eq. (I0), there are four
hyperparameters used to balance the five terms, including «, 3, v, and A. To
investigate the effect of each parameter on the proposed CARLDLC, we record
the clustering results with different values of each parameter when the other pa-
rameters are fixed. Due to space limitations, Fig. [6] shows the performance of
CARLDLC with varying parameter settings on the MSRC dataset. Specifically, o
ranges in {le-4, 5e-4, 1e-3, 5¢-3, le-2, 5e-2, le-1, 5Se-1, 1} with fixed 5 = 0.002,
v =0.01,and A = 0.1. 5 ranges in {1e-3, 5e-3, le-2, Se-2, le-1, 5e-1} with fixed
a = 0.001, v = 0.01, and A = 0.1. 7 is tuned in {le-3, 5e-3, le-2, 5¢-2, le-1,
Se-1} while keeping o = 0.001, 8 = 0.002, and A = 0.1. A varies in {1e-3, 5e-3,
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le-2, 5e-2, le-1, Se-1, 1} with setting « = 0.001, 5 = 0.002, and v = 0.01. It can
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Figure 6: Clustering performance with different values of parameters «, (3, v, and
A on the MSRC dataset.

be seen that the values of these hyperparameters have impressive effects on the
performance of CARLDLC, which means that the settings of these hyperparame-
ters are necessary. Overall, the proposed CARLDLC performs well when «, £, ~,
and A range in [le-4, 1e-3], [1e-3, le-1], [Se-3, Se-1], and [le-1, 1], respectively.

(2) Convergence analysis: Fig. [7] displays the convergence curves on the
datasets BBCsports, Citeseer, MSRC, and WikipediaArticles, where the blue line
indicates the error defined as Y, || X®) — X(Z®) — E®)||, the red line rep-
resents the error calculated by > | ||Z®) — H®||,., and the yellow line denotes
the error defined as ||A — G||«. The values of these three error terms drop very
quickly and tend to be stable in 15 iterations, which suggests that the proposed
CARLDLC exhibits good convergence properties.
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Figure 7: Convergence curves on datasets BBCsports, Citeseer, MSRC, and
WikipediaArticles.

27



(3) Running time comparison: The average running time of various multi-
view clustering algorithms on six datasets is presented in Fig. [8] For the sake of
fairness, all experiments are run in Matlab 2018b equipped on a personal computer
with 3.00GHz Intel Core i5-9500 CPU and 24GB RAM. It can be found that the
models GMC, LMVSC, and CoMSC are most efficient in terms of operation,
especially for LMVSC, the introduction of anchor graph technology turns out to a
linear computational complexity and can dramatically decreases the running time.
It is worth noting that MCDCF and LTMSC require more time to implement on
the larger datasets such as Citeseer, UCI, and Youtube, probably because MCDCF
performs a multi-layer concept factorization, and LTMSC uses the SNN based
TNN, thus making them less efficient. Furthermore, the operational efficiency of
our method is moderate, but it is acceptable on the basis of achieving excellent
clustering results.
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Running time log, (s)

BBCsports Citeseer MSRC uc Wikipedia- Youtube
Articles
0.1
mGMC uSM3C mLMVSC MCDCF  ®mLTMSC m t-SVD-MSC
mHLR-M%S m MVLDAM mCGL m CoMSC m CARLDLC

Figure 8: Comparison of running time of various multi-view clustering methods
on six datasets.

6. Conclusion

In this paper, we propose a consistent affinity representation matrix learning
method with dual low-rank constraints, which can be applied for multi-view sub-
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space clustering and is termed as CARLDLC. To be specific, we assemble all self-
representation matrices into a 3-order tensor. In pursuit of the global consensus,
t-SVD based TNN is used to constrain the target tensor representation. Different
from most multi-view clustering methods that fuse varying views in the Euclidean
space, we integrate different views to obtain the consistent affinity matrix on the
Grassmann manifold, which is further imposed with the low-rank constraint to
enhance its cluster structure. We also pay attentions to preserving the local struc-
ture of the consistent subspace via graph regularization. For solving the proposed
CARLDLC, a recursive optimization algorithm based on ADMM is developed.
Moreover, a great deal of experiments are conducted to demonstrate the superi-
ority of CARLDLC compared to other clustering methods. For the future work,
considering the problem of possible missing data in multi-view data, we want to
fill in the missing parts using low-rank tensor learning, so as to be suitable for
downstream task.
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