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Abstract— Graph convolutional networks (GCNs) have
achieved great success in many applications and have caught
significant attention in both academic and industrial domains.
However, repeatedly employing graph convolutional layers would
render the node embeddings indistinguishable. For the sake of
avoiding oversmoothing, most GCN-based models are restricted
in a shallow architecture. Therefore, the expressive power of
these models is insufficient since they ignore information beyond
local neighborhoods. Furthermore, existing methods either do
not consider the semantics from high-order local structures or
neglect the node homophily (i.e., node similarity), which severely
limits the performance of the model. In this article, we take above
problems into consideration and propose a novel Semantics and
Homophily preserving Network Embedding (SHNE) model. In
particular, SHNE leverages higher order connectivity patterns
to capture structural semantics. To exploit node homophily,
SHNE utilizes both structural and feature similarity to discover
potential correlated neighbors for each node from the whole
graph; thus, distant but informative nodes can also contribute to
the model. Moreover, with the proposed dual-attention mecha-
nisms, SHNE learns comprehensive embeddings with additional
information from various semantic spaces. Furthermore, we also
design a semantic regularizer to improve the quality of the
combined representation. Extensive experiments demonstrate
that SHNE outperforms state-of-the-art methods on benchmark
datasets.

Index Terms— Graph convolutional network (GCN), network
embedding, node homophily, structural semantics.

I. INTRODUCTION

GRAPH-STRUCTURED data widely exist in the world,
such as social networks and biochemical networks.

Due to the diversity and complexity of graph data, network
embedding has received significant research attention for data
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Fig. 1. Node A and node B show significant similarity since their local
structure contain common motifs (e.g., local structures in green and blue
circles). Furthermore, the two nodes play different roles in different motifs,
thus, contain various semantics.

mining tasks in recent years [1]–[3]. With the development
of theory and practice of network embedding, graph convo-
lutional networks (GCNs) [4], [5] have been demonstrated
to achieve better performance than traditional random-walk-
based methods [6], [7] and matrix factorization methods
[8], [9]. Due to the outperformance of graph convolu-
tional mechanism, GCN-based models have been widely
applied in many applications, such as property prediction
[10]–[12], graph classification [13]–[15], and recommender
systems [16]–[18].

GCNs can be unified into the message-passing neural net-
works (MPNNs) [19], where nodes propagate their influence
along edges and assemble features from neighborhoods to
update their representations in each iteration; thus, node fea-
tures and graph topological structures can be integrated natu-
rally. Although GCNs have achieved significant improvements
in various tasks, the message-passing framework limits the
expressiveness of GCNs. As the depth of GCNs increases,
the performance of the model sharply declines due to the over-
smoothing problem [20]–[23], which renders most GCN-based
models lacking in the discriminability of node embeddings.
As a result, GCN-based models can only have shallow archi-
tectures, thus, features from distant but informative nodes
cannot be integrated. Recently, some studies [24]–[26] have
noticed the weaknesses and proposed various neighborhood
expansion strategies to capture high-order information from
different perspectives. However, these models limit the expres-
siveness of node embeddings since they do not fully consider
the node homophily or neglect semantics from high-order
local structures. For example, as observed in Fig. 1, the local
structure of node A is the same as that of node B, where they
both contain many common motifs, thus, the two nodes have
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significant similarity and are likely to possess akin properties
though they are far from each other. Furthermore, both nodes
play different roles in various contexts (e.g., motif 1 and
motif 2 in Fig. 1). Hence, they contain complicated semantic
information.

In order to capture various semantics from local struc-
tures and long-range positions in the graph, we utilize both
structural similarity and feature similarity to explore node
homophily and discover potentially correlated nodes as the
nonlocal (NL) neighbors for each node. In terms of structural
similarity, the higher order connectivity pattern, motif, can be
utilized to explore rich semantic information in complex graph
structures. Motifs specify the semantic context of the target
node via certain patterns and can accurately distinguish the
semantic roles of each node in the receptive field according
to different structural connection patterns [27], [28]. Conse-
quently, motifs not only provide a measurement of structural
similarity but also reveal rich semantic information in the
graph. Therefore, they can be employed to assign certain roles
to each node, where nodes with the same role possess common
structural semantics. As for feature similarity, the distribution
of features reflects the underlying relationship of the data. Two
nodes that possess similar features are likely to show akin
properties even though they are far apart from each other.

Motivated by the above analysis, we propose a novel
Semantics and Homophily preserving Network Embed-
ding (SHNE) model that exploits information beyond local
structures. In this framework, we take node homophily into
consideration and utilize both feature and structural similarity
to discover potentially correlated nodes from the whole graph,
thus, informative features from long-range positions can be
integrated by the model. In particular, k-neighbor graphs
are constructed to connect nodes with their NL neighbors,
which are referred to as NL graphs. Concretely, we leverage
motifs to assign certain structural roles (SRs) for nodes in
the graph and find the NL neighbors for each node base on
the node homophily. Then, nodes in the original graph are
connected with their NL neighbors in NL graphs. In this
way, GCNs can mine rich semantic information from the
whole graph thus providing great potential for high-quality
node embeddings even if the model is confined to a shallow
architecture. In order to fuse various semantics and features
from local structures and long-range positions, we propose
dual-attention mechanisms to obtain comprehensive node rep-
resentations that combine embeddings from multiple spaces.
Moreover, a simple but effective regularizer is also designed
to force embeddings with different semantics to be consis-
tent, reducing noise and improving the quality of combined
embeddings. To summarize, this work makes the following
contributions.

1) We base our model on the node homophily to discover
correlated NL neighbors for each node and propose the
notion of SRs to reveal rich semantics. In this way, useful
features and semantic information beyond local structures
can be effectively explored by the model.

2) We propose dual-attention mechanisms to identify the
importance of various semantics and fuse features from
local structures and long-range positions automatically,

which provides interpretability and enhances the robust-
ness of SHNE.

3) We conduct extensive experiments to evaluate the perfor-
mance of SHNE, and experimental results demonstrate
that SHNE outperforms the state of the arts. Furthermore,
we perform a detailed analysis to comprehensively under-
stand the effectiveness of the model.

II. RELATED WORK

A. Graph Convolutional Networks

GCNs inherit key ideas from the design of convolutional
neural networks (CNNs) [29] and follow a local feature extrac-
tion framework to capture information from structures. GCNs
perform propagation guided by graph structures, and nodes
collectively aggregate information from their neighborhoods.
Intuitively, if nodes can receive more positive messages from
others in the graph, the model could learn more informative
embeddings. However, recent studies [30] demonstrate that
the expressive power of GCN-based models is limited by
their designs, and Xu et al. [24] point out that the range
of neighbors that a node’s embedding draws from strongly
depends on the graph structure. Consequently, the performance
of GCNs is limited by the number of convolutional layers
since repeated propagation would make node representations
of different classes indistinguishable. DeepGCN [31] applies
residual/dense connections and dilated convolutions to GCN
architectures for training deep GCNs. DAGNN [32] decouples
the transformation and propagation in graph convolution to
increase the depth of GCNs. DropEdge [33] randomly removes
certain edges from the graph at each training epoch to reduce
the convergence speed of oversmoothing and improve perfor-
mance on deep GCNs. Although these methods alleviate the
oversmoothing problem to some extent and enable models to
go deep, they are still limited to integrate the features from
long-range positions in the graph since the aggregation is
essentially local.

B. Neighborhood Expansion Strategies

Due to the inflexibility of aggregators in GCNs, different
graph structures result in very different neighborhood sizes.
A few studies exploit higher order information to improve
GCNs with various neighborhood expansion strategies. For
example, Jumping knowledge networks [24] continuously
increase the number of graph convolutional layers to enable the
target node to receive information from long-range neighbors
by leveraging skip connections. However, the accuracy of
the model does not be necessarily improved with the depth
increase, which limits the ability to capture informative fea-
tures from distant positions in the graph. Geom-GCN [25]
explores long-range dependencies in disassortative graphs
by mapping nodes into embedding spaces through various
embedding methods. Nevertheless, it uses manually defined
relationships and precomputed node embeddings that are not
task-specific, which limits the flexibility and robustness of the
model. NLAH [26] aggregates NL features by setting a virtual
node for the target node. However, the range of NL neighbors
selection is no more than five hops; hence, the expressiveness
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Fig. 2. Framework of the SHNE model. First, feature and structural similarity are utilized to construct NL graphs. Then, SHNE employs GCNs to extract
features from NL graphs and the original graph. With semantic attention, embeddings of NL graphs are fused to generate the NL embeddings. Finally, global
attention is utilized to combine the NL embedding and local embedding into the final node embedding.

of the model is still restricted to local structures of nodes, thus,
lacks the ability to aggregate features from the whole graph.
Besides, existing models either do not consider semantics
from high-order structures or neglect node homophily, which
severely limits the expressive power of the model.

C. Motifs in Graph Learning

Motif, as a high-order structure, plays an important role in
many types of networks, such as social networks, biological
networks, and neuroscience networks. Motifs are treated as
fundamental units of networks and are widely used in multiple
data mining tasks. So far, many works have demonstrated that
motifs are helpful to explore higher order connection patterns
in various graph-learning tasks. Hu et al. [34] leverage motifs
to discover the cliques in heterogeneous information networks.
Gupta et al. [35] utilize common network motifs types and
identify the topological behaviors of cancer networks and
STNs. Wen et al. [36] propose motif-based graph convolution
to capture hierarchical structures and mine important informa-
tion of skeleton convey for action recognition. Zhao et al. [37]
use motifs to capture higher order relations among the nodes
for recommendation. Different from the simple paradigms of
motif-based feature aggregation of existing methods, SHNE
utilizes connection patterns of motifs to measure structural
similarity via assigning certain roles to nodes in the graph,
thus, semantics under different structural contexts can also be
explored. In addition, with the proposed dual-attention mech-
anisms, SHNE combines multichannel information from both
local space and NL spaces, which improves the expressiveness
of the model.

III. METHODS

Given an unweight graph G = (V , A, E, X) with the
vertices set V = {1, . . . , n}, the edges set E ⊆ V × V ,
where A ∈ Rn×n denotes the adjacency matrix with n nodes,
X ∈ Rn×d denotes the feature matrix, and d is the number
of features. In this article, we focus on the task of semi-
supervised node classification.

The overall framework of SHNE is shown in Fig. 2. First,
to fully exploit complex semantics existing in graph structures,
we propose to assign certain SRs for each node in the graph
based on the connection patterns in motifs. Hence, nodes with
the same SR contain the same type of semantic information,
which contributes to the follow-up graph learning. Second,
as shown in structural similarity in Fig. 2, we group the
nodes according to their SRs and then utilize feature similarity
to construct the k-neighbor graphs. In this way, nodes in
the original graph are connected with their NL neighbors
in various semantic-specific NL graphs. After that, GCNs
can be employed to extract features from each graph and
generate node embeddings. With the proposed dual-attention
mechanisms, SHNE combines embeddings from NL graphs
and the original graph so that multichannel information is
fused to learn comprehensive node embeddings.

A. Nonlocal Graph Construction

The shallow architecture limits GCNs to aggregate features
from distant but informative nodes, which usually leads to
suboptimal performance of graph learning. In order to discover
correlated NL neighbors for each node, both structural similar-
ity and feature similarity are utilized to perform neighborhood
expansion.

1) Structural Similarity: To explicitly explore graph struc-
tures and mine semantic information in graphs, we employ
motifs to capture the structural similarity. As shown in Fig. 3,
there are two three-node motifs and four-node motifs, respec-
tively. Motifs represent different high-order structures in the
graph, and nodes also play different roles in motifs, which are
defined as SRs.

Definition 1 (Structural Role): The SRs of context nodes in
motifs are determined by automorphic equivalence, i.e., two
nodes a and b are automorphically equivalent if we exchange
their positions does not change the relationships among all
context nodes in motifs, i.e., node a has the same SR as node b.

In Fig. 4, the nodes are assigned with six different roles;
generally speaking, they can be divided into central roles
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Fig. 3. Sampled three- and four-node motifs.

Fig. 4. Toy example of setting SRs for nodes. SR-1: central role; SR-2:
marginal role; SR-3: densely connected equivalent role; SR-4: sparsely
connected equivalent role; SR-5: densely connected central role; and SR-6:
marginal role connected with the densely connected central role.

(i.e., SR-1 and SR-5), marginal roles (i.e., SR-2 and SR-6),
and equivalent roles (i.e., SR-3 and SR-4). These six roles
represent cardinal positions of nodes in the graph, and more
complex high-order SRs can be comprised of these six SRs
combined in different ways. For simplicity, here, we do not
introduce more other SRs, while the model can be seamlessly
extended to handle more complex motifs. Due to the diversity
of local structures, a node may have one or more SRs. Given
two nodes with the same SR, they satisfy the structural
similarity and share the same structural semantics. Besides,
to quickly find motifs in the graph, we use an efficient motif
matching algorithm from the website.1

2) Feature Similarity: Features of nodes play important
roles in network embedding because they reflect the underlying
relationships of nodes. Based on the homophily setting [38],
two nodes are likely to show akin properties as long as
they possess similar features. There are many algorithms to
measure feature similarity, such as heat kernel similarity [39],
second-order proximity [40], and cosine similarity [41]. Here,
we uniformly choose the widely used cosine similarity to
calculate the similarity matrix. Given the data X ∈ Rn×d ,
where row Xi represents features of the i th node, n is the
number of nodes, and d is the dimension of features. The
formula is written as follows:

Ci j = Xi · X j

‖Xi‖‖X j‖ . (1)

Before calculating the similarity matrix, we should notice
that the real networks usually include lots of nodes and
features with high dimensions. Hence, it is exhausted to
obtain the similarity matrix. What is more, some optimization
algorithms (e.g., KD tree [42] and LSH [43]) can be integrated
to reduce the computational burden. The above process can be
finished in the data preprocessing.

3) Graph Construction: For scalability and flexibility, it is
unreasonable to regard all the similar nodes of each node as
its NL neighbors. Therefore, we propose to select the top-K
representative and similar nodes with the same structural role
as corresponding nodes and connected them to construct the
semantic-specific NL graphs.

1http://www.yfang.site/data-and-tools

Definition 2 (Nonlocal Graph): The NL graph is defined as
Grk = (Vrk , Erk ), where Vrk ⊆ V and Erk denotes the edges
among the nodes in Vrk . Specifically, the adjacency matrix of
the NL graph under the semantic rk can be denoted as Ark

Ai j
rk

= I (rk ∈ ϕ(i, j)) (2)

where I (·) is the indicator function and ϕ(i, j) is a role
mapping function, which returns the projection set of common
semantic roles of node i and node j .

Fig. 5 gives a toy example of the NL graph construction.

B. Semantic Information Extraction

SRs correspond to specific semantics in graph structures.
Given the SR set {r1, r2, . . . , rp}, we can obtain p groups of
semantic NL graphs after neighborhood expansion, denoted as
{Ar1 , Ar2 , . . . , Arp }. Due to the success of graph convolutional
mechanism in graph learning, we employ GCN [4] to extract
features in the graph. Given graph (Ark , X), the lth layer
embeddings are calculated as follows:

E (l)
rk

= σ
(

D̃
− 1

2
rk Ãrk D̃

− 1
2

rk E (l−1)
rk

W (l)
rk

)
(3)

where σ denotes activation function, e.g., Relu [44], Ãrk =
Ark + Irk , D̃rk is the diagonal degree matrix of Ãrk , W (l)

rk
is

the learnable matrix of the lth layer, E (l)
rk

is the lth layer
embedding, and E (0)

rk
is initialized as X .

The semantic-specific embedding Erk encodes the NL fea-
tures captured in semantic space rk . In addition to extracting
features from various NL graphs, the information in the
original graph, which reflects the local properties of nodes,
is also essential. Similarly, GCN is applied to the original
graph to obtain the local embeddings as follows:

E (l)
o = σ

(
D̃

− 1
2

o Ão D̃
− 1

2
o E (l−1)

o W (l)
o

)
(4)

where Ão = Ao + Io, Ao denotes the adjacent matrix of the
original graph, W (l)

o is the learnable matrix of the lth layer,
E (l)

o is the lth layer embedding, and E (0)
o is initialized as X .

C. Dual-Attention Mechanisms

Generally, nodes in the graph contain rich and complex
semantic information and the embeddings from one specific
space can only reflect nodes from one aspect. To learn com-
prehensive embeddings, we propose a semantic-level attention
mechanism to fuse all the semantics automatically.

Concretely, given node i and its semantic embeddings
{Ei

r1
, . . . , Ei

rp
}, where Ei

rk
∈ R1×d , we transform the embed-

ding through a nonlinear transformation, and the attention
value is calculated by multiplying a learnable mapping vector
w ∈ R1×d ′

Ei
k = σ

(
W · (

Ei
rk

)T + b
)

(5)

ai
k = w · Ei

k (6)

where W ∈ Rd ′×d and b ∈ Rd ′×1 denote the weight matrix and
the bias vector, respectively. ai

k is the nonnormalized attention
value under the semantic space k. Given p NL semantic
embeddings of node i , we can obtain corresponding attention

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 07,2022 at 07:08:43 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: SHNE 5

Fig. 5. Toy example on how to construct NL graphs (take SR-5 as an example). First, we choose the nodes with the same SR as the target node in the graph
and then use cosine similarity to select top-K similar nodes as the neighbors of the target node in NL graphs.

values {ai
1, . . . , ai

p}; then, the weight of the kth semantic
embedding of node i can be obtained by normalizing the above
attention values

a′i
k = exp

(
ai

k

)
∑p

j=1 exp
(

ai
j

) . (7)

The weight a′i
k indicates the importance of the semantics

corresponding to SR-k. With the learned weights, all the
semantic embeddings are combined to obtain the overall NL
embedding

Ei
N L =

p∑
j=1

a′i
j Ei

r j
. (8)

Generally, information from NL and local structures con-
tributes differently to the ultimate embedding. Accordingly,
we propose a global-level attention mechanism to balance the
importance of Eo and EN L . Similarly, the formula is written
as follows:

Ei ′
∗ = σ

(
W ′ · (

Ei
∗
)T + b′

)
(9)

where Ei∗ ∈ {Ei
o, Ei

N L }, W ′ ∈ Rd ′×d , and b′ ∈ Rd ′×1 denotes
the weight matrix and the bias vector, respectively, and Ei ′

∗ ∈
Rd ′×1 is the transformed embedding. Then, attention values
are calculated as

ai
∗ = q · Ei ′

∗ (10)

where q ∈ R1×d ′
is a learnable mapping vector. Then, attention

values are normalized, and the local embedding and the NL
embedding are combined as follows:

Ei
final = exp

(
ai

o

)
exp

(
ai

o

) + exp
(
ai

N L

) · Ei
o

+ exp
(
ai

N L

)
exp

(
ai

o

) + exp
(
ai

N L

) · Ei
N L (11)

where Ei
final is the final embedding of node i , which fuses

semantics from various spaces and integrates useful features
from the whole graph.

D. Model Training

For the task of semi-supervised node classification, the cross
entropy is minimized over all labeled nodes. The predic-
tions are obtained by a classifier with the final embedding
Efinal ∈ Rn×d

Y = softmax(Efinal ∗ W f + b f ) (12)

where W f ∈ Rd×C and b f ∈ R1×C denote the learnable
matrix and the bias vector, respectively, and Y [y∗

ic] ∈ Rn×C

is the probability of node i belonging to class c. As men-
tioned before, the nodes are assigned with certain SRs, and
then, the corresponding NL graphs are constructed. However,
the construction process would inevitably introduce noise to
the NL graph. In order to keep the semantics from NL
positions consistent with the local structural information,
we design a semantic regularizer

Lc =
p∑

j=1

θ · ‖Er j − Eo‖2
2
. (13)

Finally, the overall objective of the model is composed of
the supervised loss and the semantic regularization, which is
written as follows:

L = −
∑
l∈NL

yl · log
(
y∗

l

) + Lc (14)

where yl and y∗
l represent labels and embeddings of labeled

nodes, respectively, and NL is the indices set of labeled nodes.
The overall procedure of SHNE is shown in Algorithm 1.

E. Complexity Analysis

In this work, the construction of NL graphs can be fin-
ished in the data preprocessing. The proposed SHNE utilizes
GCN with two layers. Supposed that W (0) ∈ Rh1×h2 is
the weight matrix of the first layer and W (1) ∈ Rh2×h3 is
the weight matrix of the second layer, the computational
complexity of GCN is O(|E |h1h2h3) [4], which is linear to
the number of edges in the graph. With k graphs involved
in the SHNE, the complexity of dual-attention mechanisms
is O(k|V |d ′d). The overall time complexity of the proposed
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TABLE I

SUMMARY OF DATASET STATISTICS

Algorithm 1 Algorithm of SHNE
Input: Graph g = (V , E, A, X),

motif set {M1, . . . , Mm},
structural role set {r1, . . . , rp},
hyperparameters K and θ ;

Output: Final embedding E f inal ,
semantic attention weights {a′

1, . . . , a′
p},

global attention weights {ao, aN L};
1: Use motif matching algorithm to find motifs in the graph;
2: Set certain structural roles for nodes by motifs;
3: Select top-K correlated nodes of each node according to

structural and feature similarity by (1) and connect them
in non-local graphs {Ar1 , Ar2 , . . . , Arp };

4: for r ∈ {r1, . . . , rp} do
5: Learn semantic-specific NL embedding via Eq. (3);
6: end for
7: Learn local embedding via Eq. (4);
8: Calculate semantic attention weights a′

k of different SRs
via Eq. (7);

9: Calculate final NL embedding with the weights via Eq. (8);
10: Calculate global attention weights ao and aN L , then obtain

the final embedding E f inal via Eq. (11);
11: Update parameters by optimizing L via Eq. (14);
12: Return E f inal , {a′

1, . . . , a′
p}, {ao, aN L };

model is O(k(|E |h1h2h3 +|V |d ′d)). Due to the independence
among the original graph and NL graphs, the GCN module
and dual-attention mechanisms can be easily parallelized; thus,
the complexity of SHNE is linearly related to the number of
edges and nodes.

IV. EXPERIMENTS

In this section, we evaluate the proposed SHNE in seven
datasets and answer four questions.

(Q1) How does SHNE perform compared to start-of-the-art
models?

(Q2) How is SHNE impacted by the neighborhood expansion
strategy?

(Q3) How does SHNE benefit from the dual-attention
mechanisms?

(Q4) How does SHNE benefit from the semantic
regularization?

A. Datasets
We conduct experiments on seven datasets, including Cite-

seer [4], ACM [45], Pubmed [46], CoraFull [3], BlogCat-
alog [47], UAI [3], and Flickr [47]. We follow existing
works [3], [4] that organize these datasets into homogeneous
graphs, and their description is shown in Table I.

1) Citeseer is a paper citation network where edges are
citation links and nodes are publications. The features of
each node correspond to a bag-of-words representation of
a publication. Labels of nodes specify the research field
of this article.

2) ACM is extracted from the ACM dataset where nodes
are papers and edges represent that the connected nodes,
i.e., papers, share the same author. The features of the
nodes are the bag-of-words representations of paper key-
words, and all labels are divided into three areas.

3) Pubmed is a citation network composed of the biomedical
literature, which has 19 717 nodes and 44 338 edges. The
dataset contains bag-of-words feature vectors for each
document. The label of the node is the type of diabetes
discussed in this article.

4) UAI is a dataset composed of 3067 nodes and
28 311 edges, which has been tested for node classifi-
cation in [3].

5) BlogCatalog is a social network, which is organized by
bloggers and their social relationships. Node attributes are
generated by the keywords of user profiles, and the node
labels specify the topic categories of users.

6) Flickr is a social network where nodes represent users
and edges represent their relationships. The attributes of
users are constructed by lists of tags of interest, and labels
indicate the interest groups of users.

7) CoraFull is a citation network constructed from the Cora
dataset. The nodes and edges represent papers and citation
relation between papers, respectively. Labels of nodes are
set by the topics of this article.

B. Baselines
We compare SHNE with the following state-of-the-art

methods. The baselines are divided into four cate-
gories: random-walk-based models, including DeepWalk [6];
first/second-order proximity-based model LINE [40]; vanilla
GNN-based models GCN [4] and GAT [46]; and high-order
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TABLE II

QUANTITATIVE RESULTS (%) ON THE NODE CLASSIFICATION TASK. SHNE OUTPERFORMS MOST BASELINE MODELS

information-based models: JK-net [24], MixHop [48],
FAGCN [49], PTA [50], and Geom-GCN [25].

1) DeepWalk is a random-walk-based model that employs
the SkipGram algorithm to calculate node embeddings.

2) LINE utilizes the first- and second-order proximities to
preserve structural properties.

3) GCN obtains node representations by continuously aggre-
gating features from neighboring nodes.

4) GAT is a spatial graph neural network that uses an
attention mechanism to guide neighborhood aggregation.

5) JK-net uses jump connections to increase the number
of graph convolutional layers, thus, expand the receptive
field of the nodes in the graph.

6) MixHop mixes the features of high-order neighbors in
graph convolutional layers to generate node embeddings.

7) FAGCN improves the expressive power of GCNs by
adaptively aggregating low- and high-frequency signals
in the graph.

8) PAT utilizes improved decoupled graph convolution net-
works to enable GNNs to be more effective and robust.

9) Geom-GCN combines relation- and neighbor-based
aggregation based on the node proximity defined in the
embedding space.

C. Parameters Setting

We implement our method in PyTorch [51]. For all com-
pared methods, we report the results by re-running the
released code with suggested hyperparameters. For the pro-
posed SHNE, we use Adam [52] to optimize the model and

randomly initialize parameters. Besides, we set the learning
rate to 0.0005, dropout rate to 0.5, depths of GCNs to 2, and
the size of the transformed embedding d ′ to 16. We conduct
heuristic search by exploring weight decay ∈ {5e-3, 1e-4,
5e-4, 1e-5}, the hidden size in the first layer of GCNs
hidden1 ∈ {512, 768, 1024}, and the hidden size in the second
layer hidden2 ∈ {128, 256}. The coefficients θ of semantic
regularization are searched ranging from 0.001 to 10. For
DeepWalk, the window size is set to 5, the number of walks
per node is set to 80, and the walk length is set to 10. For
all models, we run five times with the same data partition;
then, Macro-F1 and Micro-F1 (Accuracy) are used to evaluate
the performance of models. All the experiments are conducted
on a machine with an NVIDIA GeForce RTX 2080 (11-GB
memory), ten-core Intel Core i9-9900X CPU (3.50 GHz), and
128 GB of RAM.

D. Performance on Classification (Q1)

Table II shows the result of node classification. From the
table, we can observe that GCN-based methods achieve better
performance than DeepWalk and LINE. The reason behind the
improvement is that DeepWalk and LINE mainly utilize graph
structures to generate node embeddings, while GCN-based
methods consider both structural and feature information of
nodes. Moreover, it is clear that SHNE significantly outper-
forms all the compared methods. As for the rest baselines,
they enhance the expressive power of models by mining
high-order graph information. However, they are restricted
in local structures, thus, cannot capture useful features from
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TABLE III

NODE CLASSIFICATION ACCURACIES WITH SHNE AND GEOM-GCN (%).
THE PROPOSED SHNE ACHIEVES SIGNIFICANT IMPROVEMENT

ESPECIALLY IN DISASSORTATIVE GRAPH DATASETS:
TEXAS AND WISCONSIN

distant but informative nodes. By contrast, SHNE can aggre-
gate features from the whole graph, which enables the
model to achieve great improvement. The results demonstrate
that it is quite important to capture features beyond local
structures.

For further study, we compare the proposed model with
Geom-GCN, which also aims to capture long-range depen-
dencies as SHNE. For a fair comparison, SHNE is employed
in the same datasets as Geom-GCN, which includes both
assortative graph datasets (Citeseer, Cora) and disassortative
graph datasets (Texas and Wisconsin) and follows the same
experimental settings (e.g., training/testing set partition and
set of node features). What is more, Geom-GCN has three
variants, and the best results of the variants are recorded
in Table III. From the table, we see that the proposed model
performs better than Geom-GCN. This is because SHNE not
only considers node homophily but also fuses semantics in
the graph, thus, leads to more informative node embeddings.
Besides, it is worthy of mentioning that SHNE achieves signif-
icant improvement especially in disassortative graph datasets
(Texas and Wisconsin) where the homophily hypothesis [53]
is not well satisfied, which fully verifies SHNE’s ability of
generalization.

E. Model Analysis

1) Impact of Neighborhood Expand Strategy (Q2): In this
section, we discuss the impact of neighborhood expansion
strategy on the model from three aspects: the selection of K ,
the effectiveness of SRs, and the selection of motifs.

a) Selection of K : The number of NL neighbors influ-
ences the quality of the constructed NL graph. The exper-
iments are conducted on six datasets to explore how this
hyperparameter affects the performance of the model.

Fig. 6 reports the accuracy of the model with various
settings of K . From the figure, we can see that the performance
of the model increases first and begins to drop. It is probably
because, when the graph becomes sparse, the captured NL
information is limited. Also, a large K may bring noise, thus,
hinder the performance of the model. Although K = 7 or
9 also shows the superiority of SHNE over baselines, it spends
more time to construct NL graphs. In terms of accuracy and
efficiency, K = 5 is the most suitable choice.

b) Effectiveness of structural roles: The SRs defined by
motifs furnish a way to dig out rich semantics and measure the
structural similarity of nodes. To investigate whether SHNE
benefits from SRs, we only use feature similarity to find

Fig. 6. Parameter sensitivity of SHNE w.r.t. K .

NL neighbors for each node and construct k-nearest neighbor
graph calculated from the feature similarity matrix. As can
be seen in Table IV, the proposed model outperforms in all
the datasets except Flickr. The results indicate that Flickr
strongly depends on the feature graph rather than semantic
graphs. Nevertheless, the results still demonstrate that the
multifaceted semantic information captured by SHNE does
benefit the model to possess great expressive power.

c) Selection of motifs: To investigate how motifs affect
the performance of SHNE, we conduct experiments with two
variants, i.e., SHNE with three-node motifs and SHNE with
four-node motifs are referred to as SHNE-m&3 and SHNE-
m&4, respectively. From Table V, we can find that the exper-
imental results of SHNE-m&3 and SHNE-m&4 have little
difference between each other, while they are both worse than
SHNE that contains all six SRs. The reason behind the results
is that SHNE explores more structural positions in the graph,
thus, fuses more semantic information into the embedding.
As mentioned before, the six SRs represent cardinal positions
of nodes in the graph, and more complex high-order SRs
can be comprised of these six SRs combined in different
ways; thus, the proposed model can be seamlessly extended
to handle more complex motifs, and we do not conduct extra
experiments with more other SRs. Although these variants may
not be as accurate as SHNE, it is an optional way to use only
three- or four-node motifs for efficiency.
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TABLE IV

ACCURACY COMPARISONS BETWEEN THE SHNE AND SHNE WITHOUT SRS (%)

TABLE V

ACCURACY COMPARISONS BETWEEN THE SHNE AND SHNE WITH ONLY THREE- OR FOUR-NODE MOTIFS (%)

TABLE VI

ACCURACY COMPARISONS BETWEEN THE SHNE AND SHNE WITHOUT SEMANTIC OR GLOBAL ATTENTION (%)

Fig. 7. Attention weight distribution of SRs in four datasets.

2) Impact of Dual-Attention Mechanisms (Q3): To better
understand the impact of dual-attention mechanisms, we con-
duct experiments on the proposed semantic- and global-level
attention mechanisms, respectively, and report experimental
results in Table VI. From the table, we can observe that the
proposed model has a better performance than the model with-
out attention (i.e., assigns the same weight to each embedding),
which verifies the necessity of attention mechanisms.

Furthermore, attention weights reflect the importance of
different SRs. Nevertheless, it could be not all the datasets
are sensitive to motifs. In order to explore the importance
of SRs, we take four datasets as examples and draw the
distribution of attention weights of six SRs in Fig. 7. It is

worth noting that, because we only focus on the importance
of six SRs, but the semantic regularizer would reduce the
difference of node embeddings under different SRs, the models
are learned without semantic regularization. From the fig-
ure, we can see that the attention weights in Citeseer and
ACM have less difference, while they are different obvi-
ously in BlogCatalog and UAI. In terms of BlogCatalog,
the attention weights of SR-1 and SR-5 are significant, which
demonstrates that central roles are the most crucially structural
patterns. As for UAI, densely connected central role and
marginal role (SR-5 and -6) are important, while equivalent
roles (SR-3 and -4) have fewer attention weights than others,
indicating that cyclic structures do not contribute valuable
semantics as other connection patterns to the model. Though
it is hard to find influential SRs in Citeseer and ACM,
the proposed model still achieves significant improvement than
GCN, which verifies the effectiveness of SHNE.

3) Impact of Semantic Regularization Lc (Q4): To further
demonstrate the efficacy of the semantic regularizer, we con-
duct experiments on SHNE and SHNE without regularizer.
From Table VII, we can observe that SHNE achieves max-
imum relative improvements of about 4% with the semantic
regularizer, suggesting that keeping the semantic embeddings
and the local embeddings consistent with each other is bene-
ficial to improve the accuracy and robustness of the model.

F. Visualization

In order to make a more intuitive comparison and verify the
effectiveness of the proposed SHNE, we conduct visualization
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TABLE VII

ACCURACY COMPARISONS BETWEEN THE SHNE AND SHNE WITHOUT SEMANTIC REGULARIZATION (%)

Fig. 8. Visualization embedding on Flickr.

Fig. 9. Visualization embedding on BlogCatalog.

experiments that project the learned node embedding into a
2-D space. Specifically, we utilize t-SNE [54] to perform
visualization in BlogCatalog and Flickr and report the results
in Figs. 8 and 9.

From the two figures, we can observe that DeepWalk,
GCN, and GAT do not perform well because the nodes
with different labels are mixed together. Compared to the
above methods, it is evident that PTA and the proposed
SHNE separate nodes with relatively clear borders. However,
there are many misclassified nodes in several clusters from
PTA in BlogCatalog, and PTA only displays eight clusters
in Flickr, which indicates suboptimal experimental results.
Apparently, SHNE performs best because the divided clusters
correspond to all the classes of nodes, and the node embed-
dings have the highest intraclass similarity among different
classes.

V. CONCLUSION

In this article, we propose a novel SHNE model for
capturing useful information beyond local structures. The
proposed model mines rich semantics from local structures
and long-range positions. Moreover, with the proposed dual-
attention mechanisms, embeddings with various semantics
are fused to generate comprehensive node representations.
Besides, a simple but effective regularizer is also designed to
improve the quality of combined representations. Experimental
results demonstrate that SHNE is superior to state-of-the-art
models. Based on the experimental analysis, there will be
some interesting directions for further studies, such as the
design of NL GNNs that encode more complex semantics

for heterogeneous graphs. Although SHNE achieves better
performance than baselines, there is still room for improve-
ment. In the future, we would like to explore other ways to
build more robust NL graphs rather than simply constructing
k-neighbor graphs, and we are also interested in exploring the
adoption of our model for other graph-based tasks, such as
social recommendation or fraudster detection.
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