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QNG: A QUASI-NATURAL GRADIENT METHOD FOR
LARGE-SCALE STATISTICAL LEARNING\ast 

XIAOYU HE\dagger , ZIBIN ZHENG\ddagger , YUREN ZHOU\dagger , AND CHUAN CHEN\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Natural gradient method provides a powerful paradigm for training statistical models
and offers several appealing theoretic benefits. It constructs the Fisher information matrix to correct
the ordinary gradients, and thus, the cost may become prohibitively expensive in the large-scale
setting. This paper proposes a quasi-natural gradient method to address this computational issue.
It employs a rank-one model to capture the second-order information from the underlying statistical
manifold and to iteratively update the Fisher approximations. A three-loop procedure is designed
to implement the updating formulas. This procedure resembles the classical two-loop procedure in
the limited-memory BFGS method but saves half of the memory usage while it can be made faster.
The resulting method retains the convergence rate advantages of existing stochastic optimization
methods and has inherent ability in handling nonconvexity. Numerical studies conducted on several
machine learning tasks demonstrate the reduction in convergence time and the robustness in tackling
nonconvexity relative to stochastic gradient descent and the online limited-memory BFGS method.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . natural gradient, large-scale stochastic optimization, statistical learning, Fisher
information matrix
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1. Introduction. Many applications in machine learning consider solving the
empirical risk minimization problem formulated as

(1.1) min
\theta \in \BbbR n

F (\theta ) =
1

N

N\sum 
i=1

f(\theta ; \xi i),

where f is continuously differentiable and \xi 1, . . . , \xi N denote independent training
samples [8, 35]. We assume that the learning task is supervised, so each sample \xi 
consists of a pair of input vector x and target output z, i.e., \xi = (x, z). The function
f in this setting typically takes the form

(1.2) f(\theta ; \xi ) = \ell (h(\theta , x), z) +R(\theta ),

where h is a prediction model parameterized by \theta , \ell is a loss function measuring the
disagreement between the prediction h(\theta , x) and the target z, and R is a regularization
term. As in most real-world applications, both n and N are assumed to be very
large, indicating that neither evaluating the batch gradients nor applying second-
order approximations to the objective function is applicable.

\ast Received by the editors October 29, 2020; accepted for publication (in revised form) October 13,
2021; published electronically March 14, 2022.

https://doi.org/10.1137/20M1376753
\bfF \bfu \bfn \bfd \bfi \bfn \bfg : This work was funded by the Key-Area Research and Development Program of Guang-

dong Province (2020B010165003), the National Natural Science Foundation of China (62006252,
61773410, 62176269, 11801595), and the Guangdong Basic and Applied Basic Research Foundation
(2021A1515011840).

\dagger School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006,
People's Republic of China (hexy gz@outlook.com, zhouyuren@mail.sysu.edu.cn, chenchuan@
mail.sysu.edu.cn).

\ddagger Corresponding author. School of Computer Science and Engineering, Sun Yat-sen University,
Guangzhou 510006, People's Republic of China (zhzibin@mail.sysu.edu.cn).

228

D
ow

nl
oa

de
d 

07
/0

7/
22

 to
 1

56
.1

46
.4

5.
17

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/20M1376753
mailto:hexy_gz@outlook.com
mailto:zhouyuren@mail.sysu.edu.cn
mailto:chenchuan@mail.sysu.edu.cn
mailto:chenchuan@mail.sysu.edu.cn
mailto:zhzibin@mail.sysu.edu.cn


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QNG: A QUASI-NATURAL GRADIENT METHOD 229

This article concerns a special case of (1.2) when the loss function \ell has certain
statistical explanations. One example is the negative log-likelihood loss given by

(1.3) \ell (h(\theta , x), z) =  - log(p\theta (z| x)),

where p\theta (z| x) = p(z| h(\theta , x)) denotes the density corresponding to the probability
of correctly predicting the target z with the model h(\theta , x). Representative learning
tasks using this loss function include logistic regression and softmax regression and
often lead to a standard maximum likelihood learning which abounds in probability-
based learning approaches [25]. The negative log-likelihood loss coincides with the
Kullback--Leibler divergence of the prediction distribution p\theta (z| x) from the output
distribution p(z| x) [21]. Therefore, minimizing the empirical expectation of loss can
be explained as locating a point on the statistical manifold.

Another example, widely adopted in nonlinear regression and neural networks [40],
is the least squares loss:

(1.4) \ell (h(\theta , x), z) = \| z  - h(\theta , x)\| 2.

It can be cast in a probabilistic setting using the relation
\sum N

i=1 \ell (h(\theta , xi), zi) \propto 
 - log

\prod N
i=1 exp( - \| zi  - h(\theta , xi)\| 2). That is, optimizing with the least squares loss

is equivalent to fitting a univariate Gaussian model with fixed variance.
The loss functions listed above represent a rich family of stochastic optimization

problems whose search region can be transformed from the space of the parameter \theta 
into a statistical manifold implied from the prediction model h. This suggests that
exploring the underlying manifold structure may be beneficial to the optimization.

One straightforward way to solve the aforementioned problems is to optimize the
objective in (1.1) in the parameter space \BbbR n, without taking into account the un-
derlying manifold structure. Stochastic gradient descent (SGD) [31] is a pioneering
work in this line and remains the most popular first-order algorithm. SGD is com-
putationally efficient and easy to implement, but may suffer from slow convergence
when handling ill-conditioned problems. This issue can be overcome by incorporating
second-order information such as local curvature to correct the descent directions.
Stochastic second-order methods usually approximate the Hessian using the classical
BFGS update [27] while further reducing the computational budget with the limited-
memory scheme [26, 19]. Representative examples include the online limited-memory
BFGS (oLBFGS) method [33, 24] and the stochastic quasi-Newton method [9]. Al-
though having the same convergence rate, stochastic second-order methods often work
better than SGD when coping with ill-conditioning [1]. The price to pay for this is
the computing cost (such as increasing both the runtime and memory usage by a
constant but rather significant factor) and the need for stronger assumptions (such as
the boundedness of all stochastic Hessian estimates).

An alternative approach is to perform gradient descent in the space \scrH of predic-
tion models rather than the space of specific parameters. Amari [2] popularized this
idea and proposed the natural gradient method, which employs iterations of the form

(1.5) \theta t+1 = \theta t  - \eta tB
 - 1(\theta t)\nabla F (\theta t),

where \eta t is the step size and B(\theta t) is the metric tensor characterizing the geometry
of the space \scrH . The term B - 1(\theta )\nabla F (\theta ) is called natural gradient since it defines the
steepest ascent direction of p\theta in the space \scrH . In the setting that \scrH is a family of
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230 XIAOYU HE, ZIBIN ZHENG, YUREN ZHOU, AND CHUAN CHEN

densities p\theta (z| x) parameterized by \theta , the matrix B(\theta ) is usually referred to as the
Fisher information matrix (or simply ``Fisher"") and can be calculated as

(1.6) B(\theta ) =
1

N

N\sum 
i=1

\BbbE p\theta (z| xi)

\bigl[ 
\nabla log p\theta (z| xi)\nabla log p\theta (z| xi)

T
\bigr] 
,

where \BbbE p\theta (z| xi) denotes the expectation with respect to the prediction distribution
p\theta (z| xi). The natural gradient method is usually considered as belonging to the
class of second-order methods due to its close connection to Newton's method: the
Fisher B(\theta ) approaches the Hessian of the negative log-likelihood when \theta approaches
the optimum [15]. However, these two matrices do not coincide in general, because
the Hessian depends only on the data distribution while the Fisher also depends on
the prediction distribution.1 Apart from this difference, the natural gradient method
possesses two additional advantages: (1) the Fisher is always positive semidefinite and
(2) the descent direction is invariant to reparameterization of the model. This means
the natural gradient method retains the ability to capture local curvature information
while it can easily handle nonconvex objectives.

This work focuses on the natural gradient method in large-scale settings. As in
SGD, one can easily reduce the cost of gradient evaluations through replacing \nabla F (\theta t)
in (1.5) by a stochastic estimate. Calculating the inverse of the Fisher, B - 1(\theta t), is
more difficult, because the Fisher is an n\times n matrix averaged over all N inputs. This
has resulted in the development of stochastic approximation methods for calculating
the Fisher or its inverse [28, 4, 32, 22]. Existing works generally assume n is small, or
require the minibatch size to be sufficiently small to facilitate an incremental update,
or rely on problem-dependent diagonal approximation schemes, highlighting the need
for new methods that can efficiently handle generic large-scale problems.

In the next section we present a quasi-natural gradient (QNG) method for han-
dling large-scale problem (1.1) whose search space admits a statistical manifold struc-
ture. The QNG method resembles quasi-Newton methods in the sense that it updates
an approximation of the inverse of the Fisher and avoids recomputing the Fisher or
its inverse at every iteration. We propose a rank-one model for the stochastic Fisher
estimates which works well in the minibatch setting when N is large. To reduce the
algorithm complexity when n is large, we apply the limited-memory scheme and imple-
ment a three-loop procedure which is similar to but can be faster than the well-known
two-loop procedure for the L-BFGS algorithm [19]. The simulation results using sev-
eral machine learning tasks suggest that the proposed QNG method is robust and
efficient.

The paper is organized as follows. The new algorithm is described in section 2
and its convergence properties are discussed in section 3. Experiments conducted on
five machine learning tasks are reported in section 4. A literature survey on related
methods is given in section 5. We conclude this paper and give some remarks in
section 6.

Notation. For a vector v we use \| v\| to denote its \ell 2 norm. The notation A - T

refers to the inverse of the transpose of the matrix A. We use I for the identity matrix
of appropriate dimension.

1The Hessian of a finite-sum log-likelihood optimization problem is H(\theta ) =
1
N

\sum N
i=1 \nabla 2 log p\theta (zi| xi). Note its difference to the Fisher given in (1.6): in the Hessian zi is

directly taken from the ith training sample \xi i = (xi, zi), whereas the Fisher requires taking the
expectation over z \sim p\theta (z| xi). So evaluating the Fisher relies on both the distribution of training
input xi and the corresponding prediction model p\theta (z| xi), but does not involve the training output
zi. For more details on their differences, please refer to [15, 21].
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2. Algorithm definition. To apply the natural gradient iterations (1.5) in
large-scale settings, we use stochastic estimates of the gradient as well as the sto-
chastic approximations to the Fisher. For a subset \scrS \subset \{ 1, . . . , N\} , we define the
subsampled gradient and Fisher as

(2.1) \nabla F (\theta ;\scrS ) = 1

| \scrS | 
\sum 
i\in \scrS 

\nabla f(\theta ; \xi i) and B(\theta ;\scrS ) = 1

| \scrS | 
\sum 
i\in \scrS 

B(\theta ;xi),

where B(\theta ;xi) denotes the instantaneous Fisher corresponding to the sample \xi i =
(xi, zi):

(2.2) B(\theta ;xi) = \BbbE p\theta (z| xi)

\bigl[ 
\nabla log p\theta (z| xi)\nabla log p\theta (z| xi)

T
\bigr] 
.

Note that B(\theta ;xi) does not depend on the target output zi. The stochastic Fisher

estimate B(\theta ;\scrS ) may have a maximum rank
\sum | \scrS | 

i=1 Rank(B(\theta ;xi)); using it to approx-
imate the Fisher requires | \scrS | to be sufficiently large, which still could be prohibitively
expensive.

We propose that an effective approach to further reduce the cost for representing
the stochastic Fisher is to use an unbiased rank-one estimation. More precisely, we
seek a vector v(\theta ;\scrS ) \in \BbbR n such that

(2.3) \BbbE p\theta (z| \scrS )[v(\theta ;\scrS )vT (\theta ;\scrS )] = B(\theta ;\scrS ),

where \BbbE p\theta (z| \scrS )[\cdot ] denotes the expectation taken with respect to all prediction models in
\scrS . The vector v(\theta ;\scrS ) encodes the expected second-order information of the prediction
model, playing a similar role as the stochastic Fisher but in a more compact form.

Our method for calculating v(\theta ;\scrS ) consists of two steps: (1) Sample for each
i \in \scrS an output \^zi from the prediction distribution p\theta (z| xi). (2) Compute v(\theta ;\scrS ) as

(2.4) v(\theta ;\scrS ) = 1\sqrt{} 
| \scrS | 

\sum 
i\in \scrS 

\nabla log p\theta (\^zi| xi), \^zi \sim p\theta (z| xi).

Then, it is easy to verify that the estimation given by v(\theta ;\scrS )v(\theta ;\scrS )T is indeed unbi-
ased:

\BbbE p\theta (z| \scrS )

\bigl[ 
v(\theta ;\scrS )v(\theta ;\scrS )T

\bigr] 
=

1

| \scrS | 
\sum 
i\in \scrS 

\BbbE p\theta (z| xi)

\bigl[ 
v(\theta ;xi)v(\theta ;xi)

T
\bigr] 

+
1

| \scrS | 
\sum 
i,j\in \scrS 
i \not =j

\BbbE p\theta (z| xi) [v(\theta ;xi)]\BbbE p\theta (z| xj)

\bigl[ 
v(\theta ;xj)

T
\bigr] 

= B(\theta ;\scrS ),

(2.5)

where the second equality follows from

(2.6) \BbbE p\theta (z| x) [\nabla log p\theta (z| x)] =
\int 

\nabla p\theta (z| x)dz = \nabla 1 = 0.

Using the above estimation, our QNG method employs the iteration

\theta t+1 = \theta t  - \eta tV
 - 1
t \nabla F (\theta t;\scrS t),(2.7a)

Vt+1 = (1 - cv)Vt + cvv(\theta t;\scrS t)v(\theta t;\scrS t)
T ,(2.7b)
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where the matrix Vt \in \BbbR n\times n can be viewed as an exponential moving average of
the stochastic Fisher and cv \in (0, 1) is a hyper-parameter controlling the decay rate.
When the step size \eta t is small, the matrix Vt serves as an unbiased estimate of the
Fisher B(\theta t), and in this sense, second-order information is incorporated for overcom-
ing the ill-conditioning issue.

2.1. Limited-memory QNG iteration. The update in (2.7) requires us to
update and invert a matrix of size n \times n and its cost is prohibitive when n is large.
We deal with this issue using the well-known limited-memory technique. The additive
update in (2.7b), however, seems to admit no simple way to invert Vt. A more
natural choice is to derive an equivalent multiplicative update which facilitates efficient
computation of matrix inverse.

The method starts with factorizing the matrix Vt as Vt = AtA
T
t and substituting

it into (2.7b) for both t and t+ 1:

(2.8) At+1A
T
t+1 = (1 - cv)AtA

T
t + cvv(\theta t;\scrS t)v(\theta t;\scrS t)

T .

Defining a vector qt \in \BbbR n such that

(2.9) v(\theta t;\scrS t) = Atqt

and pulling out At on the right-hand side of (2.8), one gets

(2.10) At+1A
T
t+1 = At

\bigl( 
(1 - cv)I + cvqtq

T
t

\bigr) 
AT

t .

With direct calculation of the square root of the term (1 - cv)I + cvqtq
T
t , one finally

obtains a multiplicative update rule

(2.11) At+1 = AtKt, where Kt = \alpha I + \beta tqtq
T
t ,

\alpha =
\surd 
1 - cv, and \beta t =

1
\| qt\| 2 (

\sqrt{} 
1 - cv + \| qt\| 2cv  - 

\surd 
1 - cv). The transformation ma-

trix Kt is rank one and carries the second-order information explored in the iteration
t.

As a next step, the recursive multiplicative update (2.11) will be formulated in a
limited-memory manner. By expanding (2.11), we can rewrite At in a nonrecursive
form

(2.12) At = A1K1K2 \cdot \cdot \cdot Kt - 1.

The transformation matrix Kj , by definition, carries information no later than the
iteration j. Having chosen a memory parameter l, we can restrict the use of past
information to the last l matrices \{ Kj\} t - 1

j=t - l, since the earlier ones \{ Kj\} t - l - 1
j=1 , as well

as A1, are likely to contribute little to the descent step at the current iteration t. To
implement this idea, we introduce a new matrix \~At \in \BbbR n\times n to approximate At by
truncating the matrices earlier than the iteration t - l:

(2.13) \~At = Kt - lKt - l+1 \cdot \cdot \cdot Kt - 1.

By doing this, we maintain a limited memory of recent captured second-order infor-
mation, thereby making it possible to reduce the algorithm complexity. Unlike in
L-BFGS or its stochastic counterparts, the initial matrix A1 is fixed to I. We use no
initialization tricks for \~At since they seem to complicate the algorithm while yielding
no significant improvement in performance.
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With the matrix \~At, we define a limited-memory version of the QNG iteration as

\theta t+1 = \theta t  - \eta t \~A
 - T
t

\~A - 1
t \nabla F (\theta t;\scrS t),(2.14a)

qt = \~A - 1
t v(\theta t;\scrS t).(2.14b)

Equation (2.14a) implements the limited-memory version of (2.7a) by replacing Vt

with \~At
\~AT
t . Explicitly maintaining the Fisher becomes unnecessary; instead, the

vector qt for reconstructing \~At should be calculated and stored.
For a more precise description, first pick a stochastic minibatch \scrS t and obtain the

gradient estimate \nabla F (\theta t;\scrS t) and the rank-one Fisher estimate v(\theta t;\scrS t). Compute
then a temporary variable u = \~A - 1

t \nabla F (\theta t;\scrS t) and perform the descent step \theta t+1 =
\theta t - \eta t \~A

 - T
t u. Calculate qt = \~A - 1

t v(\theta t;\scrS t) as the final output and this will be involved
in reconstructing the Fisher in the next l iterations.

The limited-memory QNG iteration (2.14) employs three matrix-vector multipli-
cations of two types:

\~A - 1
t u = K - 1

t - 1K
 - 1
t - 2 \cdot \cdot \cdot K

 - 1
t - lu,(2.15a)

\~A - T
t u = K - 1

t - lK
 - 1
t - l+1 \cdot \cdot \cdot K

 - 1
t - 1u.(2.15b)

The matrix K - 1
j can be cheaply obtained using the Sherman--Morrison formula

(2.16) K - 1
j =

1\surd 
1 - cv

I  - 

\Biggl( 
1\surd 

1 - cv
 - 1\sqrt{} 

1 - cv + cv\| qj\| 2

\Biggr) 
qjq

T
j

\| qj\| 2
.

Therefore, both (2.15a) and (2.15b) can be performed using at most l pairs of dot prod-
uct and vector addition; their only difference is the sequence of multiplying the ma-
trices \{ Kj\} t - 1

j=t - l. We describe in Algorithm 2.1 a unified procedure for computing the

multiplication of form u = K - 1
i1

K - 1
i2

\cdot \cdot \cdot K - 1
i\tau 

v in a one-loop recursion. We can obtain
\~A - 1
t u by calling this procedure with an ordered set of vectors \{ qt - 1, qt - 2, . . . , qt - \tau \} 

while obtaining \~A - T
t u with \{ qt - \tau , qt - \tau +1, . . . , qt - 1\} , where \tau = min\{ l, t\} . The norm

\| qt\| should be stored together with qt to save computation time, as the former will
be used multiple times in subsequent iterations. Note that we extract the coefficient

1\surd 
1 - cv

from K - 1
j in (2.16) and multiply it back after the recursion (see the differ-

ence between (2.16) and line 3 in Algorithm 2.2); this will save \tau  - 1 vector-scalar
multiplications.

Algorithm 2.1 OneLoopRecursion for computing u = K - 1
i1

K - 1
i2

\cdot \cdot \cdot K - 1
i\tau 

v

Require: Vector v, ordered set of vectors \{ qi1 , qi2 , . . . , qi\tau \} 
1: u = v
2: for j = i\tau , i\tau  - 1, . . . , i1 do

3: u = u - 1
\| qj\| 2

\Bigl( 
1 - 

\sqrt{} 
1 - cv

1 - cv+cv\| qj\| 2

\Bigr) 
(qTj u)qj

4: end for
5: u = (1 - cv)

 - \tau /2u
6: return uD
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2.2. Implementation and computational cost. The pseudocode of the com-
plete method is given in Algorithm 2.2. Here we choose | \scrS t| = b for all t. Two core
steps in each iteration are the computation of QNG in lines 5--11 and the computation
of vector qt in lines 12--16. The QNG is obtained by first computing \~A - 1

t \nabla F (\theta t;\scrS t)
in line 8 and then \~A - T

t u in line 9, where u is the result of the first multiplication.
Both multiplications are performed with vectors \{ qj\} t - 1

j=t - l in the one-loop recursion.
In the case 1 < t < l we define \tau = t - 1 and proceed to use only \tau available vectors
\{ qj\} t - 1

j=t - \tau . The multiplications can be simply skipped when t = 1 given \~A1 = I.

After the descent step, the vector qt is calculated using \~A - 1
t v(\theta t;\scrS t) and maintained

together with its norm. Precisely, it is initialized to v(\theta t;\scrS t) and, if t > 1, multi-
plied by \~A - 1

t which is reconstructed using no more than l previously available vectors
\{ qj\} t - 1

j=t - \tau .

Algorithm 2.2 QNG method

Require: Initial solution \theta 1, step size sequence \{ \eta t\} \infty t=1, minibatch size b, memory

parameter l, decay rate cv = 1 - (sf )
1
l where sf is user-defined

1: for t = 1, 2, \cdot \cdot \cdot do
2: Choose a subset \scrS t \subset \{ 1, 2, . . . , N\} of size b
3: Calculate the stochastic gradient \nabla F (\theta t;\scrS t) as defined in (2.1)
4: Calculate the vector v(\theta t;\scrS t) as defined in (2.4)
5: u = \nabla F (\theta t;\scrS t)
6: \tau = min(t - 1, l)
7: if t > 1 then
8: u = OneLoopRecursion(u, \{ qt - 1, qt - 2, . . . , qt - \tau \} )
9: u = OneLoopRecursion(u, \{ qt - \tau , qt - \tau +1, . . . , qt - 1\} )

10: end if
11: \theta t+1 = \theta t  - \eta tu
12: if t > 1 then
13: qt = OneLoopRecursion(v(\theta t;\scrS t), \{ qt - 1, qt - 2, . . . , qt - \tau \} )
14: else
15: qt = v(\theta t;\scrS t)
16: end if
17: Store qt and \| qt\| 
18: if t > l then
19: Discard qt - l and \| qt - l\| 
20: end if
21: end for

A parameter that deserves special treatment is the decay rate cv. It controls
the weight of recently captured second-order information in the matrix \~At and can
significantly influence the algorithm performance. However, tuning this parameter
can be difficult, as its optimal value seems to be highly correlated to the memory
parameter l. To address this, we propose to use a heuristic strategy to transform it
to a new one which is much easier to tune. This strategy is based on the partition of
the approximate Fisher \~At

\~AT
t as

(2.17) \~At
\~AT
t = (1 - cv)

lI + U,

where U \in \BbbR n\times n is some matrix dependent on the vectors \{ qj\} t - 1
j=t - l. The matrix

U is positive semidefinite and has probabilistically upper bounded eigenvalues (see
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Lemma 3.1). Therefore, the QNG direction can be regarded as a standard SGD
direction, corrected by the information encoded in the matrix U . The term (1 - cv)

l

should be considered as a whole, because it acts as a scaling factor applied to the
SGD direction. Hence, we define a scaling parameter sf as

(2.18) sf = (1 - cv)
l

and use it as the input parameter instead of cv. With a specific sf , the QNG method
explores the SGD direction with a fixed amount of computational effort; changing
the memory parameter l only influences the correction imposed by the second-order
information. We find this strategy makes the parameter tuning much easier.

Here, we discuss the computational cost of the QNG method. For comparison, we
also consider the oLBFGS method [33], a well-known second-order method for large-
scale stochastic optimization. First, the QNG method maintains l vectors \{ qj\} t - 1

j=t - l

in memory, so its space complexity is O(ln). On problems with a very large decision
space, the memory consumption could be substantial, and this is indeed a general
limitation of most second-order methods. The memory usage of QNG is smaller than
that of oLBFGS, as the latter requires storing 2l vectors of size n. The reason is in
oLBFGS the curvature information is explored from the pairs of variable variation
and gradient variation and this doubles the memory usage.

The QNG method requires approximately 6ln operations2 in executing the three
multiplications; for oLBFGS, the two-loop recursion requires only 4ln operations [27].
Hence, the QNG method requires about 50\% more computing time in the descent and
update steps than oLBFGS. Nevertheless, the extra computations can be compensated
by less overhead in capturing the second-order information. To see this, let us consider
a classical binary classification task, namely, the logistic regression problem. This
problem uses a negative log-likelihood loss with the probabilistic density function
given by

(2.19) p\theta (z| x) = \sigma (z\theta Tx) =

\Biggl\{ 
\sigma (\theta Tx) if z = 1,

1 - \sigma (\theta Tx) if z =  - 1,

where \sigma denotes the sigmoid function

(2.20) \sigma (a) =
1

1 + exp( - a)
.

Evaluating p\theta (zi| xi) for each sample \xi i requires approximately n operations and thus
the cost of obtaining the stochastic gradient is approximately 2bn. The oLBFGS
method further doubles the gradient evaluations as it has to compute the gradient
variation for capturing the curvature information. Thus, it takes approximately 4bn+
4ln operations per iteration.

Unlike oLBFGS, the QNG iteration only uses one stochastic gradient but requires
one additional vector v(\theta t;\scrS t). It may appear, based on the definition v(\theta t;\scrS t) =
(1/
\sqrt{} 

| \scrS t| )
\sum 

i\in \scrS t
\nabla log p\theta (\^zi| xi) with \^zi \sim p\theta (z| xi), that evaluating v(\theta t;\scrS t) is as ex-

pensive as evaluating the stochastic gradient. But this is not the case because evaluat-
ing p\theta (\^zi| xi) can resort to evaluating the sigmoid function \sigma (\theta Txi) which has already
been done when evaluating the stochastic gradient. In other words, the QNG iter-
ation avoids the most expensive part in evaluating the vector v(\theta t;\scrS t), which takes

2We count a multiplication and an addition as an operation.
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approximately bn operations. Therefore, the total cost of each QNG iteration is
approximately 3bn + 6ln. This leads to a notable difference in number of required
operations of

(2.21) 3bn+ 6ln for QNG versus 4bn+ 4ln for oLBFGS.

In common settings for limited-memory methods, the memory parameter l is usually
smaller than 20 and the additional cost of QNG to execute the three-loop procedure
is negligible. The minibatch size b, contrarily, can be much larger to facilitate par-
allelization or noise reduction; in this setting, the QNG iteration is more efficient in
exploring the second-order information. That is, when using a relatively large mini-
batch size, the QNG method can be competitive to or even better than the oLBFGS
method in terms of the computing time. For example, with the setting b = 200 and
l = 10, each iteration of QNG reduces about 1/4 computing time needed by oLBFGS.
Similar results regarding the relative cost of the QNG and oLBFGS iterations can be
obtained on more complicated problems, such as the multilayer perception training
tasks; see Appendix D for details.

3. Convergence. In this section, we analyze the convergence properties of the
proposed QNG method. The first goal here is to show that the new method globally
converges to a critical point without the assumption on convexity, which is often con-
sidered as an advantage of natural gradient methods over other second-order methods.
The convergence rate on strong convex problems, under some standard assumptions,
is also investigated.

To facilitate the subsequent analyses, we denote the Fisher approximation by \~Vt,
i.e.,

(3.1) \~Vt = \~At
\~AT
t = Kt - \tau \cdot \cdot \cdot Kt - 1Kt - 1 \cdot \cdot \cdot Kt - \tau , where \tau = min\{ t - 1, l\} .

We first show that this matrix has eigenvalues bounded above and away from zero.

Lemma 3.1. Let \tau = min\{ t - 1, l\} . The Fisher approximation \~Vt satisfies

(3.2) \alpha 2lI \preceq \~Vt \preceq 
\tau \prod 

j=1

\bigl( 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l\surd cv

\bigr) 2
I for t = 1, 2, . . . ,

where \alpha =
\surd 
1 - cv is defined in (2.11).

Proof. See Appendix A.

Lemma 3.1 does not require any assumptions. This means the Fisher approxi-
mations are positive definite by design and thus the QNG method is able to handle
nonconvexity. On the other hand, the upper bound of the approximate Fisher de-
pends on the vectors \{ v(\theta t;\scrS t)\} and one has to restrict these vectors to make sure
that the QNG provides a sufficient descent.

We give now some assumptions that will be used in proving global convergence.
Here we use \BbbE t to denote the expectation taken with respect to all randomness at the
tth iteration.

Assumption 1. The objective function F is continuously differentiable and is lower
bounded by a scalar Fmin. The gradient \nabla F is Lipschitz continuous with constant
L > 0; namely, for any a, b \in \BbbR n, \| \nabla F (a) - \nabla F (b)\| \leq L\| a - b\| .
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Assumption 2. There exists a constant Mg such that, for all t \geq 1,

(3.3) \BbbE t[\| \nabla F (\theta t;\scrS t)\| 2] \leq M2
g .

Assumption 3. The step size sequence is selected as nonsummable but square
summable, i.e.,

(3.4)

\infty \sum 
t=1

\eta t = \infty and

\infty \sum 
t=1

\eta 2t < \infty .

Assumption 4. There exists a constant Mv such that, for all t \geq 1,

(3.5) \BbbE t[\| v(\theta t;\scrS t)\| 2] \leq M2
v .

Assumptions 1, 2, and 3 are customary in the analysis of stochastic optimization
methods. Both the boundedness of gradient norms and the use of diminishing step
sizes are intended to eliminate the adverse effect caused by the random variation.
Assumption 4 is specific to QNG and we use it to upper bound the approximate Fisher;
without it, the QNG iteration will still produce a descent direction in expectation,
but may not be guaranteed to approach the optimum. We show this in the following
lemma.

Lemma 3.2. Under Assumptions 1 and 2, the iteration of QNG satisfies the fol-
lowing inequality for all t \geq 1:

\BbbE t[F (\theta t+1)] - F (\theta t)

\leq  - \eta t
\| \nabla F (\theta t)\| 2\prod \tau 

j=1

\bigl( 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l

\surd 
cv
\bigr) 2 +

L

2
\eta 2t\alpha 

 - 4lM2
g .

(3.6)

Proof. See Appendix B.

In Lemma 3.2, the bound of the expected per-iteration progress depends on the
random vectors \{ v(\theta t;\scrS t)\} and therefore we can only get a probabilistically sufficient
descent condition. This is the major difference from other second-order methods
based on Hessian approximations. The benefit is that it alleviates the need for the
positive definiteness of the captured second-order information, allowing QNG to han-
dle nonconvexity without additional mechanisms such as damping or regularization.
Using Lemma 3.2, it is sufficient to prove the global convergence property of QNG in
probability.

Theorem 3.3. Suppose that Assumptions 1--4 hold for \{ \theta t\} generated by QNG.
Then

(3.7) lim
t\rightarrow \infty 

\| \nabla F (\theta t)\| 2 = 0 with probability 1.

Proof. We first prove a weaker result,

(3.8) lim inf
t\rightarrow \infty 

\| \nabla F (\theta t)\| 2 = 0 with probability 1.

Let \BbbE [\cdot ] denote the total expectation taken over all previous randomness, i.e.,

(3.9) \BbbE [F (\theta t)] = \BbbE 1\BbbE 2 . . .\BbbE t - 1[F (\theta t)].
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Taking the expectation \BbbE at both sides of (3.6) and summing for t = 1, 2, . . . , T give

Fmin  - F (\theta 1) \leq \BbbE [F (\theta T+1)] - F (\theta 1)

\leq  - 
T\sum 

t=1

\eta t\BbbE 

\Biggl[ 
\| \nabla F (\theta t)\| 2\prod \tau 

j=1

\bigl( 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l

\surd 
cv
\bigr) 2
\Biggr] 
+

L

2
\alpha  - 4lM2

g

T\sum 
t=1

\eta 2t .
(3.10)

Let T \rightarrow \infty and recall that
\sum \infty 

t=1 \eta 
2
t < \infty ; we have

(3.11)

\infty \sum 
t=1

\eta t\BbbE 

\Biggl[ 
\| \nabla F (\theta t)\| 2\prod \tau 

j=1

\bigl( 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l

\surd 
cv
\bigr) 2
\Biggr] 
< \infty .

On the other hand, by Assumption 4 and Markov's inequality, we can bound the
denominator in (3.11) as

\BbbP 

\left[  \tau \prod 
j=1

\bigl( 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l\surd cv

\bigr) 2 \geq Yt

\right]  
\leq max

1\leq j\leq \tau 
\BbbP 
\Bigl[ 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l\surd cv \geq Y

1/2\tau 
t

\Bigr] 
\leq Y

 - 1/2\tau 
t max

1\leq j\leq \tau 
\BbbE 
\bigl[ 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l\surd cv

\bigr] 
\leq Y

 - 1/2\tau 
t

\bigl( 
\alpha +Mv\alpha 

 - l\surd cv
\bigr) 
,

(3.12)

where Yt > 0 is fixed when a specific t is given. This bound cannot be used directly
as it depends on t. To address this, we can choose, for any \epsilon 1 > 0, some constant W
satisfying

(3.13) W > max

\Biggl\{ 
1,

\biggl( 
\epsilon 1

\alpha +Mv\alpha  - l
\surd 
cv

\biggr) 2l
\Biggr\} 
.

Then, using (3.12) and (3.13) and the fact \tau = min\{ t - 1, l\} , we have

\BbbP 

\left[  \tau \prod 
j=1

\bigl( 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l\surd cv

\bigr) 2 \geq W

\right]  
\leq \BbbP 

\left[  \tau \prod 
j=1

\bigl( 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l\surd cv

\bigr) 2 \geq 
\biggl( 

\epsilon 1
\alpha +Mv\alpha  - l

\surd 
cv

\biggr) 2\tau 
\right]  

\leq 1

\epsilon 1
,

(3.14)

which is a bound (in probability) that is independent of t. We can now proceed to
bound the norm of the gradient as
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lim sup
t\rightarrow \infty 

\BbbP 
\bigl[ 
\| \nabla F (\theta t)\| 2 \geq \epsilon 

\bigr] 
\leq lim sup

t\rightarrow \infty 
\BbbP 

\left[  \| \nabla F (\theta t)\| 2 \geq \epsilon ,

\tau \prod 
j=1

\bigl( 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l\surd cv

\bigr) 2 \leq W

\right]  
+ lim sup

t\rightarrow \infty 
\BbbP 

\left[  \| \nabla F (\theta t)\| 2 \geq \epsilon ,

\tau \prod 
j=1

\bigl( 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l\surd cv

\bigr) 2
> W

\right]  
\leq lim sup

t\rightarrow \infty 
\BbbP 

\Biggl[ 
\| \nabla F (\theta t)\| 2\prod \tau 

j=1

\bigl( 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l

\surd 
cv
\bigr) 2 \geq \epsilon 

W

\Biggr] 

+ lim sup
t\rightarrow \infty 

\BbbP 

\left[  \tau \prod 
j=1

\bigl( 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l\surd cv

\bigr) 2
> W

\right]  
\leq 1

\epsilon 1
,

(3.15)

where in the second inequality we have used the bounds in (3.11) and (3.14) and the
condition

\sum \infty 
t=1 \eta t = \infty . It follows that the claim (3.8) is true.

The desired result (3.7) can be derived from (3.8) in a method similar to the
analysis of Wang et al. [37]. Assume now (3.7) does not hold. According to (3.8),
there exist two sequences \{ ui\} and \{ vi\} satisfying ui < vi such that, for a given \epsilon 2 > 0,

(3.16) \| \nabla F (\theta ui
)\| \geq 2\epsilon 2, \| \nabla F (\theta vi)\| < \epsilon 2, \| \nabla F (\theta t)\| \geq \epsilon 2, for t = ui + 1, . . . , vi  - 1.

This implies ui > vi - 1 and hence the sets \{ t\} vi - 1
t=ui

are disjoint. Then, from (3.11), we
obtain

\infty >

\infty \sum 
i=1

vi - 1\sum 
t=ui

\eta t\BbbE 

\Biggl[ 
\| \nabla F (\theta t)\| 2\prod \tau 

j=1

\bigl( 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l

\surd 
cv
\bigr) 2
\Biggr] 

> \epsilon 22

\infty \sum 
i=1

vi - 1\sum 
t=ui

\eta t
1

\BbbE 
\Bigl[ \prod \tau 

j=1

\bigl( 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l

\surd 
cv
\bigr) 2\Bigr] .

(3.17)

It follows, using (3.14), that \infty > \epsilon 22
\sum \infty 

i=1

\sum vi - 1
t=ui

\eta t with probability 1 and therefore

(3.18) lim
i\rightarrow \infty 

vi - 1\sum 
t=ui

\eta t = 0 with probability 1.

Consider then the expected norm of descent steps. Using Lemma 3.1, Assumption 2,
and Jensen's inequality yields

(3.19) \BbbE \| \theta t+1  - \theta t\| \leq 
\sqrt{} 
\BbbE \| \theta t+1  - \theta t\| 2 \leq \eta t\alpha 

 - 2lMg,

which, together with (3.18) and the convexity of \| \cdot \| , implies

(3.20) \BbbE \| \theta vi  - \theta ui
\| \leq 

vi - 1\sum 
t=ui

\BbbE \| \theta t+1  - \theta t\| \leq \alpha  - 2lMg

vi - 1\sum 
t=ui

\eta t.

We finally conclude from (3.18) and (3.20) that

(3.21) lim
i\rightarrow \infty 

\| \theta vi  - \theta ui
\| = 0 with probability 1,

a contradiction to (3.16). Hence, the claim in (3.7) is valid.

D
ow

nl
oa

de
d 

07
/0

7/
22

 to
 1

56
.1

46
.4

5.
17

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

240 XIAOYU HE, ZIBIN ZHENG, YUREN ZHOU, AND CHUAN CHEN

We complement the above global convergence property with a characterization of
the expected convergence rate that we detail below.

Theorem 3.4. Consider the QNG method as defined in Algorithm 2.2 and sup-
pose that Assumptions 1--4 hold. Further assume

\bullet the objective function F is strongly convex with constant \mu > 0;
\bullet the norms of the vectors \{ v(\theta t;\scrS t)\} are deterministically bounded by Mv > 0,
i.e., \| v(\theta t;\scrS t)\| \leq Mv for all t \geq 1;

\bullet the step size is chosen as \eta t =
\eta 1T1

T1+t - 1 with parameter T1 > 0 where

\eta 1T1 >
C1

2\mu 
and C1 = max

\Bigl\{ 
1,
\bigl( 
\alpha +Mv\alpha 

 - l\surd cv
\bigr) 2l\Bigr\} 

.

Then the expected difference between the objective value F (\theta t) and the optimal objective
F\ast satisfies

(3.22) \BbbE [F (\theta t)] - F\ast \leq T1

T1 + t - 1
max

\Biggl\{ 
L
2 \eta 

2
1T1\alpha 

 - 4lM2
g

\eta 1T1
2\mu 
C1

 - 1
, F (\theta 1) - F\ast 

\Biggr\} 
,

where \BbbE denotes the total expectation defined in (3.9).

Proof. See Appendix C.

Remarks. The O(1/t) convergence rate established in Theorem 3.4 is typical of
stochastic optimization methods. Although this is no better than SGD, the QNG
method can often enjoy the improvements in convergence time, as illustrated in the
numerical experiments in section 4. This sublinear rate in theory, compared to deter-
ministic methods which often exhibit a linear convergence rate, is due to the existence
of noise. Notice that in QNG there exist two kinds of noises, one in the stochastic gra-
dient estimates \nabla F (\theta ;\scrS ) and the other one in the vectors v(\theta ;\scrS ) for approximating
the Fisher. While both can influence the algorithm performance, these noises have
different roles in determining the convergence rate. To see this, consider the expected
per-iteration progress of the objective values given in Lemma 3.2. The vectors v(\theta ;\scrS )
appear as a scaling factor of \| \nabla F (\theta )\| . The bound of the noise in stochastic gradi-
ents, Mg, appears in the term that is independent of \| \nabla F (\theta )\| and this means such
noise may inhibit the convergence even when \theta is near the optimum. If there were no
noise in the gradients (e.g., when Mg \propto \| \nabla F (\theta )\| ), then one could easily obtain linear
convergence with a fixed step size; in this case, the noise of the vectors v(\theta ;\scrS ) does
not influence the convergence rate up to a factor. On the contrary, even when we
could eliminate the noise in the Fisher approximation, it is still impossible to obtain
a convergence rate faster than O(1/t) if the gradient computation is noisy [1]. These
observations imply that the QNG method can be implemented with the stochastic
variance reduction techniques [13] to achieve a better convergence rate and we leave
it as a future study.

4. Experimental results. To verify the theoretical results, we evaluate the
performance of QNG for solving a number of classification problems arising in machine
learning.

4.1. Experimental setup. We first consider two convex problems, logistic re-
gression and softmax regression, and two nonconvex problems, nonlinear least squares
classification and nonconvex support vector machine. All these problems have objec-
tive functions taking the form of (1.1) and (1.2). In particular, we consider using the
\ell 2 regularization
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(4.1) R(\theta ) =
\lambda 

2
\| \theta \| 2,

where the parameter \lambda is set to 10 - 6 throughout the experiment. The loss functions
of these problems are defined as follows:

\bullet Logistic regression:

(4.2) \ell (h(\theta , x), z) =  - log \sigma (z\theta Tx), z \in \{  - 1, 1\} ,

where \sigma (\cdot ) is the sigmoid function given in (2.20).
\bullet Softmax regression:

(4.3) \ell (h(\theta , x), z) =  - 
c\sum 

k=1

\BbbI \{ z = k\} log exp(\theta Tk x)\sum c
j=1 exp(\theta 

T
j x)

, z \in \{ 1, . . . , k\} ,

where c is the number of classes.
\bullet Nonlinear least squares classification:

(4.4) \ell (h(\theta , x), z) =
\bigl( 
tanh(\theta Tx) - z

\bigr) 2
, z \in \{  - 1, 1\} ,

where tanh(\cdot ) is defined as

(4.5) tanh(a) =
1 - exp( - 2a)

1 + exp( - 2a)
.

\bullet Nonconvex support vector machine:

(4.6) \ell (h(\theta , x), z) = 1 - tanh(z\theta Tx), z \in \{  - 1, 1\} .

Both logistic regression and softmax regression adopt the negative log-likelihood
loss. The nonlinear least squares classification problem, which implements a single-
layer perception model [29], can also be viewed as adopting a Gaussian likelihood loss.
The proposed QNG method is applicable on these problems because they all lead to a
standard maximum likelihood learning task defined on a certain statistical manifold.

The nonconvex support vector machine was originally introduced in [23]. This
problem does not model a probability distribution over the outputs and there seems
to be no simple way to convert it into a standard density estimation task. Neverthe-
less, the loss function qualifies the margin of a simple classifier sgn(\theta Tx) which is a
surrogate of error probability [7] and therefore does have implicit statistical meanings.

To see this, from the fact 1 - tanh(z\theta Tx) \propto 1 - \sigma (2z\theta Tx) and log(
\sum N

i=1 \sigma (2zi\theta 
Txi)) \geq \sum N

i=1 log \sigma (2zi\theta 
Txi), we can estimate a probability density p\theta (z| x) = \sigma (2z\theta Tx) which

upper bounds the objective function near its optimum. This motivates using QNG to
solve the nonconvex support vector machine in the manifold admitted by the proba-
bility model p\theta (z| x) = \sigma (2z\theta Tx). The goal of choosing this problem is to show the
effectiveness of QNG even in the heuristic setting.

In total, eight datasets are used in the numerical study.3 Their statistics are briefly
summarized in Table 1. The rcv1, news20, real-sim, and gisette datasets are binary
and used for logistic regression, nonlinear least squares classification, and nonconvex
support vector machine. The other four contain multiclass outputs and are used for
softmax regression. We have scaled all samples in each dataset to ensure that they
have an average \ell 2 norm 1. In all these datasets, 70\% of the data are used for training
while the remaining 30\% are used for testing.

3All the datasets can be downloaded at www.csie.ntu.edu.tw/\sim cjlin/libsvmtools/datasets.
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Table 1
Statistics of the used datasets.

Dataset n N \# classes

rcv1 47236 677399 2
news20 1355191 19996 2
real-sim 20958 72309 2
gisette 5000 6000 2
covtype 54 581012 7
mnist 784 60000 10
SensIT 100 78823 3
protein 367 17766 3

We compare the performance of QNG with that of SGD and oLBFGS. For non-
linear least squares classification and the nonconvex support vector machine, the
oLBFGS method is equipped with explicit damping techniques to tackle nonconvex-
ity [37, 27]. For all these algorithms, the minibatch size is set to b = \lfloor 

\surd 
N\rfloor and the

step size sequence is of the form

(4.7) \eta t =
\eta 1T1

T1 + t - 1

as in Theorem 3.4. A grid search is performed to find the optimal step size parameters
\eta 1 and T1, as well as learning parameter sf in QNG, from candidate values \eta 1 \in 
\{ 1, 2, 4\} , T1 \in \{ 101, 103, 105\} , and sf \in \{ 10 - 1, 10 - 2, 10 - 3\} . In the grid search, the
memory parameter l in QNG and oLBFGS is fixed to 5, but other values such as 2 and
10 are also considered in the subsequent experiments. All algorithms are initialized
at the vector of zeros and run with a budget of 20N gradient evaluations. For a fair
competition, one evaluation of the vector v(\theta t;\scrS t) in QNG is counted as b stochastic
gradient evaluations, considered as expensive as one minibatch gradient. On all test
cases, the algorithms are run independently 20 times and the median results are
reported.

Apart from comparing the algorithms on individual test instances,4 we also report
their overall performance in a set of test instances using the performance profiles [10].
The profile of an algorithm is the curve of the fraction of its solved test instances
(denoted by \rho (\tau )) versus the amount of allocated computational budget (denoted
by \tau ). The computational budget is measured by the ratio of the required running
time or gradient evaluations to that required by the best performer. We say an
algorithm can solve a test instance if its obtained objective function value f \prime satisfies
f0 - f \prime > 0.05(f0 - f\ast ), where f0 is the initial objective function value and f\ast is the best
value obtained among all algorithms in all independent runs. An algorithm with high
values of \rho (\tau ) or one that is located at the top right of the figure is preferable. The
profile is plotted to show the training and generalization performance individually,
where the objective functions are respectively the training loss and the test loss.

4.2. Numerical results on convex problems. Figure 1 shows the conver-
gence curves in the training on the two convex problems. In most cases, the two
second-order methods, QNG and oLBFGS, converge much faster than the first-order
method, SGD, demonstrating the power of utilizing second-order information. QNG
and oLBFGS behave similarly in general; this is because both logistic regression and

4A test instance refers to a certain problem run on a certain dataset.
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(a) LR, rcv1 (b) LR, news20 (c) LR, real-sim (d) LR, gisette

(e) SR, covtype (f) SR, mnist (g) SR, SensIT (h) SR, protein

Fig. 1. Comparison of QNG with SGD and oLBFGS on logistic regression (LR) and softmax
regression (SR). Plots display the training error over the number of gradient evaluations (GEs).
Both QNG and oLBFGS are tested with the memory parameter l varying in \{ 2, 5, 10\} .

softmax regression belong to the canonical generalized linear models and therefore
the Hessian and Fisher coincide [16, Chapter 10.8]. The difference in the behaviors of
QNG and oLBFGS is due to the different ways in exploring the second-order informa-
tion. QNG is slightly slower than oLBFGS in the initial phase but tends to produce
lower objective function values after a few epochs.

Similar to that for oLBFGS, the memory parameter l has a significant effect on
the performance of QNG. Increasing l from 2 to 5 and further to 10 consistently
improves QNG, but the benefit is not obvious in every case. It suggests that, just like
in the limited-memory approximation to the Hessian, the optimal memory size in the
limited-memory approximation to the Fisher is problem-dependent.

Figure 2 provides the performance profiles obtained on the convex problems. For
both gradient evaluations and running time and for both training and test, the curves
of QNG mostly lie to the left of others, indicating its superior performance. The
profiles of QNG and oLBFGS overlap for small \tau when measured in terms of the
gradient evaluations. However, the overlaps become unapparent when the profiles
are measured with running time. This implies in current settings QNG has less
per-iteration computing time than oLBFGS. On the other hand, setting l to 2 is
sufficient to solve all problems for training but fails on more than 20\% of problems
for testing. We may thus conclude that the memory size has a considerable impact
on the generalization performance of QNG.

4.3. Numerical results on nonconvex problems. To ensure that oLBFGS
can handle nonconvex problems, we consider using two damping techniques in updat-
ing its Hessian approximation: (1) the classical damping technique proposed by Powell
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(a) Training performance based on
gradient evaluations

(b) Training performance based on
running time

(c) Test performance based on
gradient evaluations

(d) Test performance based on
running time

Fig. 2. Performance profiles of SGD, oLBFGS, and QNG on convex problems. Numerical
results are obtained on logistic regression over rcv1/news20/real-sim/gisette and softmax regression
over covtype/mnist/SensIT/protein. In (a) and (b) the performance is measured using training loss
and in (c) and (d) using test loss.

(see Chapter 11 in [27]) and (2) a very recent one proposed by Wang et al. [37]. The
corresponding algorithms are denoted by oLBFGS-d and oLBFGS-d2, respectively.
Powell's method uses an additional two-loop recursion to correct negative curvatures
and thus doubles the computing cost in every iteration. Wang et al.'s method avoids
this issue by preregularizing the gradient variation but introduces a new regulariza-
tion parameter. In this experiment, the regularization parameter of oLBFGS-d2 is
chosen from \{ 1, 0.1, 0.01\} using a grid search procedure.

Figure 3 shows the convergence behaviors of SGD, oLBFGS-d, oLBFGS-d2, and
QNG on nonconvex problems. Unlike in the convex cases, oLBFGS does not show
clear superiority over SGD when equipped with the Powell's damping technique.
Wang et al.'s method improves Powell's in most cases, but the corresponding al-
gorithm, oLBFGS-d2, does not show obvious advantage over SGD. QNG exhibits
consistent performance on both convex and nonconvex problems; in most cases, it
converges faster than SGD, oLBFGS-d, and oLBFGS-d2. Again, we observe that the
effect of the memory size in QNG is problem-dependent: in a few cases the setting
l = 2 causes divergence in the initial phase. This is possibly because that the step
size is tuned with l = 5; a more careful parameter tuning procedure may alleviate
this problem. In many other cases the performance is insensitive to this memory
parameter and setting l to 5 seems to be sufficient.
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(a) NLSC, rcv1 (b) NLSC, news20 (c) NLSC, real-sim (d) NLSC, gisette

(e) NSVM, rcv1 (f) NSVM, news20 (g) NSVM, real-sim (h) NSVM, gisette

Fig. 3. Comparison of QNG with SGD, oLBFGS-d, and oLBFGS-d2 on nonlinear least squares
classification (NLSC) and nonconvex support vector machine (NSVM). Plots display the training
error over the number of gradient evaluations (GEs). Both QNG and oLBFGS-d are tested with the
memory parameter l varying in \{ 2, 5, 10\} .

Figure 4 further gives a visual comparison of the four algorithms using profiles.
QNG with l = 10 is superior to all the other algorithms in both training and testing.
QNG with l = 2 or 5 is competitive with oLBFGS with l = 10 when the computational
budget is limited (say, \tau \leq 2), but requires many fewer computations in achieving
\rho (\tau ) \geq 60\%. In general, QNG is very efficient in terms of both gradient evaluations
and running time.

4.4. Robustness to small minibatches. In the experiments presented in sub-
sections 4.2 and 4.3, we used a relatively large minibatch size, b = \lfloor 

\surd 
n\rfloor . The intention

in choosing this setting is threefold: (1) to accelerate the process through paralleliza-
tion such as auto-vectorization and auto-multithreading, (2) to offset the additional
costs of computing the matrix-vector products, and (3) to reduce the additional noise
introduced in the rank-one approximation of the Fisher. Now we test QNG with a
much smaller minibatch size and investigate whether its performance is robust in this
setting.

Figure 5 reports the convergence curves of SGD, oLBFGS, and QNG on logistic
regression with b = 20. In this setting, the overhead of performing the quasi-natural
gradient descent in QNG is not negligible. Nevertheless, the numeric results suggest
that this overhead seems to be well compensated by its fast convergence performance.
QNG is superior to or competitive with SGD in all cases. It, for instance, achieves
better results within shorter running time on news20, real-sim, and gisette. On the
other hand, when comparing these plots with Figure 1, one immediately finds that
reducing the minibatch size degrades the performance of oLBFGS and makes it even
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(a) Training performance based on
gradient evaluations

(b) Training performance based on
running time

(c) Test performance based on
gradient evaluations

(d) Test performance based on
running time

Fig. 4. Performance profiles of SGD, oLBFGS-d, oLBFGS-d2, and QNG on nonconvex prob-
lems. Numerical results are obtained on nonlinear least squares and the nonconvex support vector
machine, both over the rcv1, news20, real-sim, and gisette datasets. In (a) and (b) the performance
is measured using training loss and in (c) and (d) using test loss.

worse than SGD in certain cases. The performance degradation of oLBFGS with
a small minibatch has been observed in [33] and the authors empirically verified
that to overcome this one has to use a large memory parameter l which further
increases the per-iteration cost. QNG does not suffer from this issue, exhibiting a
better robustness than oLBFGS for small minibatch sizes. Note, however, that the
advantage of QNG over SGD becomes insignificant on the largest dataset rcv1, which
implies that using such a small minibatch may not be sufficient to produce informative
Fisher approximations. This experiment suggests that QNG has a great robust against
small minibatches but a relative large minibatch size is in general preferable.

4.5. More experiments on multilayer perceptron training. We further
consider a more challenging problem, the training of multilayer perceptron (MLP)
classifiers. The MLP model used in this experiment has a fully connected hidden layer
with 100 neurons, where the tanh function (4.5) is used as the activation function.
The last layer of the model is a softmax function defined in (4.3). The experiments
are performed on the four multiclass datasets introduced in subsection 4.1.

We choose SGD and oLBFGS used in the above experiments for comparison.
We additionally include two state-of-the-art stochastic optimization methods, namely
ADAM [30] and SignSGD [6]. ADAM is a well-known algorithm for training neural
networks which uses a diagonal Fisher approximation as a preconditioner. SignSGD
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(a) rcv1 (b) news20 (c) real-sim (d) gisette

Fig. 5. Performance of SGD, oLBFGS, and QNG on logistic regression in the setting of b = 20.
Plots display the training error over the number of gradient evaluations (GEs) and the running time
(Time).

takes the sign of gradient as its descent direction, with the aim of improving the
robustness against noise. Both ADAM and SignSGD exploit landscape curvature
information to accelerate the search, and in this sense, they are analogous to QNG and
oLBFGS. The difference is that, in ADAM and SignSGD, the descent directions are
adjusted coordinatewise; therefore, their effectiveness largely depends on the problem
characteristics (e.g., sparsity of the gradient and eigenspectrum of the Hessian).

All considered algorithms use a constant step size tuned from candidate values
\{ 2 - 6, . . . , 2 - 1\} using a grid search. For ADAM, the learning rate of the momentum
and the learning rate for adapting the variance are set respectively to 0.9 and 0.99.
The parameter sf in QNG is fixed to 0.1. To handle nonconvexity, we implement
oLBFGS with the Powell's damping technique [27, Chapter 11] and the method is
denoted by oLBFGS-d. The minibatch size is set to b = \lfloor 

\surd 
N\rfloor . To improve the

generalization performance of the MLP model, we adopt the \ell 2 regularization defined
in (4.1) and set the parameter \lambda to 10 - 6.

In QNG, after evaluating the gradient \nabla F (\theta t;\scrS t), the vector v(\theta t;\scrS t) used for
approximating the Fisher can be computed through an additional backward pass.
Thus, each iteration of QNG takes one forward pass and two backward passes, so it
is computationally cheaper than oLBFGS, which requires two forward passes and two
backward passes. The implementation details as well as the per-iteration complexity
analysis are given in Appendix D.

Figure 6 shows the performance comparison between QNG and the other four
methods. Here we use two different methods for measuring the per-iteration compu-
tational cost: the number of epochs (in the first row) and the exact CPU computing
time (in the second row). From the convergence curves of training loss versus epochs,
it is observed that QNG performs clearly better than SignSGD and oLBFGS-d on all
four datasets. QNG is also competitive with SGD on SensIT while reaching better
final results on all three other datasets. The relative advantage of QNG can also be
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(a) mnist (b) protein (c) covtype (d) SensIT

Fig. 6. Training MLP classifiers on the (a) mnist, (b) protein, (c) covtype, and (d) SensIT
datasets. The first row shows the training loss versus the number of epochs; the second row shows
the training loss versus the computing time; the last row shows the prediction accuracy on test data
versus the number of epochs.

observed when the computational cost is measured using the CPU computing time; it
implies its additional cost in approximating the Fisher can be partially compensated
by the faster convergence. ADAM seems to reach different solutions on mnist, pro-
tein, and SensIt, as its performance in training is different from that in testing (see
the last row). For example, it achieves the best training performance on SensIt but
exhibits the worst prediction accuracy in testing. In general, due to the diagonalized
Fisher modeling method, the effectiveness of ADAM may vary according to the prob-
lem characteristics, which has also been observed in existing studies [5]. QNG, on the
contrary, achieves consistent performance on all four datasets.

5. Related work. Optimization methods inspired by natural gradients have
attracted much attention recently in the machine learning community. Except in
a few simple cases, natural gradients do not have an easy-to-compute expression
and this evokes extensive research interest in dealing with the computational issue.
Most existing methods adopt an adaptive scheme for approximating the Fisher which
improves the efficiency and robustness when N is large [4, 28, 32, 34, 14, 18, 38,
36]. They typically maintain a metric for the underlying statistical manifold and use
stochastic Fisher estimates to update it, and in this way, efficiently estimating the
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Fisher becomes the key design step. Early work in [4, 28] focused on incremental
online learning, resembling the QNG method in the special case of b = 1. Stochastic
Fisher in this setting is rank one and this avoids the computational issue but cannot
benefit from parallelization or using minibatches. Later works such as [32, 34, 39]
explore the low-rank structure of the Fisher by using Gauss--Newton approximation
or incremental principal component analysis. They have not eliminated the need for
matrix factorization or inversion and the time complexity may scale quadratically or
even cubically with the underlying dimension. Our QNG method differs from those
methods in that it employs the limited-memory rank-one update rule to approximate
the inverse Fisher.

An alternative for simplifying the calculation is to extract the sparse or singular
pattern of the Fisher [22, 11, 3, 12, 17]. Very recently, there was a jump in interest in
using this idea for deep learning, probably due to the sparse and singular structures
abounding in neural networks. For example, the Kronecker-factored approximate
curvature (K-FAC) family of deep networks [22, 11] utilizes blockwise approximations
and achieves faster convergence than well-tuned SGD in practice. A common feature
of these methods is that their major ingredients (e.g., damping, initialization, and
approximation) are specific to neural networks and hence they are not general-propose
solvers.

In [20] the author proposed a limited-memory method for modeling covariance
matrices in the context of high-dimensional black-box optimization, which appears
to be similar to our QNG method in technical details. However, the implementation
in this paper is much more simple as we only approximate the matrix factor for
the Fisher, whereas in [20] both the matrix factor and its inverse are required to be
reconstructed.

6. Concluding remarks. In this paper we present a quasi-natural gradient
method, QNG, for solving stochastic optimization problems where the search space
admits a statistical manifold. QNG resembles classical quasi-Newton methods in
approximating the Fisher information matrix but employs a novel limited-memory
implementation that may be more efficient in the large minibatch setting. Coupled
with this limited-memory technique, a rank-one unbiased method is proposed to es-
timate the stochastic Fisher, which avoids complicated matrix operations and makes
the time complexity scale linearly with the memory length. We establish global con-
vergence of the algorithm on smooth but probably nonconvex problems and obtain
a sublinear convergence rate on strongly convex problems. We carry out numerical
simulations on several machine learning tasks and show that QNG is superior to or
at least competitive with SGD and oLBFGS on convex problems while exhibiting
better robustness on nonconvex problems. Although the presented implementation
only achieves a sublinear convergence rate, the theoretical analysis suggests that the
Fisher approximation can be uniformly bounded in probability. Therefore, our algo-
rithm is compatible with state-of-the-art variance reduction techniques to achieve a
faster convergence.

Appendix A. Proof of Lemma 3.1. First, regarding the definition of \~Vt in
(3.1), it will be convenient to define some intermediate results as

(A.1)

\Biggl\{ 
\~V
[0]
t = I,
\~V
[j]
t = Kt - j

\~V
[j - 1]
t Kt - j , j = 1, . . . , \tau .
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Then, \~Vt = \~V
[\tau ]
t . By the definition of \{ Kj\} in (2.11), we have, for all t \geq 1 and

j \in \{ 1, . . . , \tau \} , that \~V
[j]
t is positive definite. This allows us to proceed with the

inverse matrix ( \~V
[j]
t ) - 1.

Let \lambda 1[\cdot ] denote the maximum eigenvalue of a specific matrix. It follows from
(A.1) that

(A.2) \lambda 1[( \~V
[j]
t ) - 1] = \lambda 1[K

 - 1
t - j(

\~V
[j - 1]
t ) - 1K - 1

t - j ] \leq \lambda 1[( \~V
[j - 1]
t ) - 1](\lambda 1[K

 - 1
t - j ])

2.

According to the definition of \{ Kj\} in (2.11),

\lambda 1[K
 - 1
j ] = \lambda 1[(\alpha I + \beta jqjqj)

 - 1] = \alpha  - 1.

Substituting this into (A.2) and recalling \alpha < 1 we can conclude that

\lambda 1[( \~V
[j]
t ) - 1] \leq \lambda 1[( \~V

[j - 1]
t ) - 1]\alpha  - 2

and thus

(A.3) \lambda 1[( \~V
[\tau ]
t ) - 1] \leq \alpha  - 2\tau \leq \alpha  - 2l.

It gives the lower bound \~Vt \succeq \alpha 2lI.

Similarly, by (2.11) and (A.1), we can derive an upper bound for \~V
[j]
t as

\lambda 1[ \~V
[j]
t ] \leq \lambda 1[ \~V

[j - 1]
t ](\lambda 1[Kt - j ])

2

= \lambda 1[ \~V
[j - 1]
t ]

\bigl( 
\alpha + \beta t - j\| qt - j\| 2

\bigr) 2
= \lambda 1[ \~V

[j - 1]
t ]

\biggl( 
\alpha +

\sqrt{} 
1 - cv + \| qt - j\| 2cv  - 

\surd 
1 - cv

\biggr) 2

\leq \lambda 1[ \~V
[j - 1]
t ] (\alpha + \| qt - j\| 

\surd 
cv)

2
.

(A.4)

The second inequality uses
\surd 
a+ b - 

\surd 
a \leq 

\surd 
b.

By the definition of qj given in (2.14b), we have

(A.5) \| qj\| 2 = \| \~A - 1
j v(\theta j ;\scrS j)\| 2 = v(\theta j ;\scrS j)

T \~V  - 1
j v(\theta j ;\scrS j) \leq \| v(\theta j ;\scrS j)\| 2\lambda 1[ \~V

 - 1
j ].

Substituting (A.5) into (A.4) and then applying the bound provided in (A.3) we obtain

(A.6) \lambda 1[ \~Vt] = \lambda 1[ \~V
[\tau ]
t ] \leq 

\tau \prod 
j=1

\bigl( 
\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l\surd cv

\bigr) 2
.

This completes the proof.

Appendix B. Proof of Lemma 3.2. The proof is standard in stochastic
optimization and is given below for completeness.

The Lipschitz continuity of the gradient in Assumption 1 implies that

F (\theta t+1) - F (\theta t) \leq \nabla F (\theta t)
T (\theta t+1  - \theta t) +

L

2
\| \theta t+1  - \theta t\| 2

=  - \eta t\nabla F (\theta t)
T \~V  - 1

t \nabla F (\theta t;\scrS t) +
L

2
\eta 2t \| \~V  - 1

t \nabla F (\theta t;\scrS t)\| 2

\leq  - \eta t\nabla F (\theta t)
T \~V  - 1

t \nabla F (\theta t;\scrS t) +
L

2
\eta 2t \lambda 1[ \~V

 - 1
t ]2\| \nabla F (\theta t;\scrS t)\| 2

\leq  - \eta t\nabla F (\theta t)
T \~V  - 1

t \nabla F (\theta t;\scrS t) +
L

2
\eta 2t\alpha 

 - 4l\| \nabla F (\theta t;\scrS t)\| 2,

(B.1)

where in the last inequality we use the result from Lemma 3.1.

D
ow

nl
oa

de
d 

07
/0

7/
22

 to
 1

56
.1

46
.4

5.
17

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QNG: A QUASI-NATURAL GRADIENT METHOD 251

Taking expectation with respect to \scrS t, we have

\BbbE t[F (\theta t+1)] - F (\theta t)

\leq  - \eta t\BbbE t[\nabla F (\theta t)
T \~V  - 1

t \nabla F (\theta t;\scrS t)] +
L

2
\eta 2t\alpha 

 - 4l\BbbE t[\| \nabla F (\theta t;\scrS t)\| 2]

\leq  - \eta t\nabla F (\theta t)
T \~V  - 1

t \nabla F (\theta t) +
L

2
\eta 2t\alpha 

 - 4lM2
g

\leq  - \eta t
\| \nabla F (\theta t)\| 2\prod \tau 

j=1(\alpha + \| v(\theta t - j ;\scrS t - j)\| \alpha  - l
\surd 
cv)2

+
L

2
\eta 2t\alpha 

 - 4lM2
g .

(B.2)

The second inequality uses \BbbE t[\nabla F (\theta t;\scrS t)] = \nabla F (\theta t) and Assumption 2. The third
inequality follows directly from Lemma 3.1. This gives the desired bound.

Appendix C. Proof of Theorem 3.4.
According to Lemma 3.1, the constant C1 upper bounds the maximal eigenvalue of

the approximate Fisher \~Vt. We can rewrite Lemma 3.2, using the \mu -strong convexity,
as

(C.1) \BbbE t[F (\theta t+1)] - F (\theta t) \leq  - \eta t
2\mu 

C1
(F (\theta t) - F\ast ) +

L

2
\eta 2t\alpha 

 - 4lM2
g .

Substituting \eta t =
\eta 1T1

T1+t - 1 and rearranging (C.1) yields

\BbbE t[F (\theta t+1)] - F\ast \leq 
\biggl( 
1 - \eta 1T1

T1 + t - 1

2\mu 

C1

\biggr) 
(F (\theta t) - F\ast )(C.2)

+
L

2

\biggl( 
\eta 1T1

T1 + t - 1

\biggr) 2

\alpha  - 4lM2
g .

The desired conclusion (3.22) holds trivially when t = 1. Now we prove the case t > 1
by induction. Assume (3.22) holds for some t \geq 1 and define

\rho = T1 max

\Biggl\{ 
L
2 \eta 

2
1T1\alpha 

 - 4lM2
g

\eta 1T1
2\mu 
C1

 - 1
, F (\theta 1) - F\ast 

\Biggr\} 
;

then from (C.2) we have

\BbbE [F (\theta t+1) - F\ast ] \leq 
\biggl( 
1 - \eta 1T1

T1 + t - 1

2\mu 

C1

\biggr) 
1

T1 + t - 1
\rho 

+
L

2

\biggl( 
\eta 1T1

T1 + t - 1

\biggr) 2

\alpha  - 4lM2
g

=
(T1 + t - 1) - 1

(T1 + t - 1)2
\rho +

1 - \eta 1T1
2\mu 
C1

(T1 + t - 1)2
\rho +

L
2 \eta 

2
1T

2
1\alpha 

 - 4lM2
g

(T1 + t - 1)2

\leq 1

T1 + t
\rho +

(1 - \eta 1T1
2\mu 
C1

)\rho + L
2 \eta 

2
1T

2
1\alpha 

 - 4lM2
g

(T1 + t - 1)2
.

(C.3)

Using the assumption \eta 1T1 > C1

2\mu and the definition of \rho yields (3.22).

Appendix D. Implementation details on multilayer perceptron classi-
fiers. In this section, we discuss how to implement QNG on a more complicated
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problem, the training of MLP models. Specifically, we consider a J-layer MLP clas-
sifier formulated as

(D.1)

\left\{     
a[1] = x \in \BbbR n1 ,

a[j] = \sigma h

\bigl( 
W [j]a[j - 1] + b[j]

\bigr) 
\in \BbbR nj , j = 2, . . . , J  - 1,

a[J] = \sigma o

\bigl( 
W [J]a[J - 1] + b[J]

\bigr) 
\in \BbbR nJ ,

where W [j] \in \BbbR nj - 1\times nj is the weight matrix, b[j] \in \BbbR nj is the bias vector, \sigma h is the
elementwise activation function in the hidden layers, and \sigma o is the activation function
in the output layer. At the jth layer, nj is the number of neurons, and a[j] is the
layer's output formulated as an nj-dimensional vector. The above MLP model can
be parameterized by

\theta =
\Bigl( 
W [2], b[2], . . . ,W [J], b[J]

\Bigr) 
and its dimension is on the order of O(

\sum J
j=2 nj - 1nj). We assume that the last layer

is a softmax classifier satisfying

a[J] \propto exp
\Bigl( 
W [J]a[J - 1] + b[J]

\Bigr) 
and

nJ\sum 
k=1

a
[J]
k = 1,

where a
[J]
k denotes its kth output and the function exp is performed elementwise.

The vector a[J] is thus the prediction of the MLP model, i.e., h(\theta , x) = a[J], and the
corresponding loss function is

\ell (h(\theta , x), z) =  - 
nJ\sum 
k=1

\BbbI \{ z = k\} log a[J]k ,

where z \in \{ 1, . . . , nJ\} is the index of target label. For simplicity, denote \scrI (z) as the
nJ -dimensional indicator vector corresponding to z, i.e., the kth element of \scrI (z) is 1
if and only if z = k. Simple calculations reveal that the gradient of the loss depends
on the prediction error and can be written as

\nabla \ell (h(\theta , x), z) = g(\scrI (z) - a[J])

for some function g that can be evaluated using the chain rule. Hence, when given a
minibatch \scrS of training samples, the gradient can be approximated by

(D.2) \nabla F (\theta ;\scrS ) = 1

| \scrS | 
\sum 
i\in \scrS 

\nabla \ell (h(\theta , xi), zi) =
1

| \scrS | 
\sum 
i\in \scrS 

g
\Bigl( 
\scrI (zi) - a[J]

\Bigr) 
,

where zi is the target output associated with the input xi. Meanwhile, as the above
loss function has already been in the negative log-likelihood form, for approximating
the Fisher, we can compute the vector v(\theta ;\scrS ) as

(D.3) v(\theta ;\scrS ) = 1\sqrt{} 
| \scrS | 

\sum 
i\in \scrS 

\nabla \ell (h(\theta , xi), \^zi) =
1\sqrt{} 
| \scrS | 

\sum 
i\in \scrS 

g
\Bigl( 
\scrI (\^zi) - a[J]

\Bigr) 
,

where \^zi is randomly drawn from the prediction distribution

(D.4) \BbbP [\^zi = k] = a
[J]
k .
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Comparing (D.2) and (D.3), we know both \nabla F (\theta ;\scrS ) and v(\theta ;\scrS ) require evalu-
ating the prediction model h(\theta , xi) for all i \in \scrS . In the context of MLP training,
it implies that, when computing \nabla F (\theta ;\scrS ) and v(\theta ;\scrS ) simultaneously, the forward
pass for each training sample can be performed only once. The only difference in
computing \nabla F (\theta ;\scrS ) and v(\theta ;\scrS ) is that the target output in the former is from the
training set while in the latter it is drawn from the prediction model. This difference
will only influence the evaluation of the prediction error, which is the input of the
backward pass. That is, we can reuse the back-propagation procedure to compute
v(\theta ;\scrS ) without writing additional code. Detailed steps are given below:

1. Forward pass: input xi and compute a[1], . . . , a[J] in order using (D.1).
2. Error evaluation-I: input zi and compute ei = \scrI (zi) - a[J].
3. Backward pass-I: input ei and use back-propagation to compute g (ei).
4. Error evaluation-II: draw \^zi from the distribution in (D.4) and compute \^ei =

\scrI (\^zi) - a[J].
5. Backward pass-II: input \^ei and use back-propagation to compute g (\^ei).

From (D.3), it is clear that g (\^ei) g (\^ei)
T

is an unbiased estimator of the Fisher (up
to a constant scalar). Repeating these steps over the whole minibatch \scrS gives both
\nabla F (\theta ;\scrS ) and v(\theta ;\scrS ).

Now we can proceed to analyze the time cost of QNG. It is found that in each
iteration QNG requires one forward pass and two backward passes for each training
sample. Denote the time complexity of forward and backward passes by \scrT f and \scrT b,
respectively. Further denote \scrT l as the time complexity of one loop procedure used
in the limited-memory scheme. Then, the per-iteration time cost of QNG is about
| \scrS | (\scrT f + 2\scrT b) + 3\scrT l.

We further consider oLBFGS for comparison. The per-iteration cost of oLBFGS
is about 2| \scrS | (\scrT f + \scrT b) + 2\scrT l, as it involves one fewer loops for computing the descent
direction but one more forward pass for each training sample. Usually, we have \scrT f =

\Theta (
\sum J

j=2 nj - 1nj), \scrT b = \Theta (
\sum J

j=2 nj - 1nj), \scrT l = \Theta (l
\sum J

j=2 nj - 1nj), and it is reasonable
to assume the minibatch size | \scrS | to be significantly larger than the memory parameter
l. Then, we can compare QNG and oLFBGS as

per-iteration cost of QNG

per-iteration cost of oLBFGS
\approx | \scrS | (\scrT f + 2\scrT b) + 3\scrT l

2| \scrS | (\scrT f + \scrT b) + 2\scrT l
\approx \scrT f + 2\scrT b

2\scrT f + 2\scrT b
.

The relative cost of QNG and oLBFGS depends on how to implement the MLP
models; if the forward and backward passes have the similar computation cost, then
QNG can reduce about 1/4 time required by oLBFGS. Also note that, due to the
nonconvexity of MLP models, oLBFGS should always be implemented with damping
mechanisms; this makes oLBFGS take more computing time.
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