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a b s t r a c t

Heterogeneous graphs with multiple types of nodes and edges are ubiquitous in the real world and
possess immense value in many graph-based downstream applications. However, the heterogeneity
within nodes and edges in heterogeneous graphs has brought pressing challenges for practical node
representation learning. Existing works manually define multiple meta-paths to model the semantic
relationships in heterogeneous graphs. Such strategies heavily rely on the quality of domain knowledge
and require extensive hand-crafted works. In this paper, we propose a novel Meta-path Extracted
heterogeneous Graph Neural Network (Megnn) that is capable of extracting meaningful meta-paths
in heterogeneous graphs, providing insights about data and explainable conclusions to the model’s
effectiveness. Concretely, Megnn leverages heterogeneous convolution to combine different bipartite
sub-graphs corresponding to edge types into a new trainable graph structure. By adopting the message
passing paradigm of GNNs through trainable convolved graphs, Megnn can optimize and extract
effective meta-paths for heterogeneous graph representation learning. To enhance the robustness
of Megnn, we leverage multiple channels to yield various graph structures and devise a channel
consistency regularizer to enforce the node embeddings learned from different channels to be similar.
Extensive experimental results on three datasets not only show the effectiveness of Megnn compared
with the state-of-the-art methods, but also demonstrate the favorable interpretability of the extracted
meta-paths.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Many real-world data are intrinsically represented by graph
tructures, such as social networks, citation networks, e-
ommerce systems, and so on, where objects and relationships
re represented by nodes and edges. Analyzing and mining
nowledge in graph data has been an emerging topic in both
cademia and industry. However, the complex non-Euclidean
nd semantics-related graph structures lead to challenges in this
ield. For example, there is no fixed order and size for node
eighbors and the nodes and edges may be related to different
ypes of semantic information in specific scenarios. To address the
hallenges in graph mining, some representative methods [1,2]
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propose to leverage some pre-defined metrics, e.g., the Morgan
index, to encode the complex graph structures into embeddings.

With the development of the technique of deep learning,
graph embedding, which aims to adaptively learn a low-
dimensional embedding vector for each node in a graph, has
been shown to be effective for various downstream graph-based
tasks such as node classification [3,4], link prediction [5,6] and
community detection [7,8]. Recently, Graph Neural Networks
(GNNs), the newly emerging graph embedding models, have
presented powerful expressiveness and achieved state-of-the-
art performance on the graph-based tasks. The representative
methods include Graph Convolutional Network (GCN) [9] and
Graph Attention Network (GAT) [10] and their variants [11–15].
All these GNN-based methods can effectively capture attribute
similarity and preserve structure information with the specific
message propagation.

Despite the promising performance, these methods can only
deal with homogeneous graphs, i.e., the node type and edge type
are unique. In the real world, the graph data often contains mul-

tiple node types and edge types. Furthermore, each type of nodes
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Fig. 1. An example of citation graph and the illustration of meta-paths of length
two started from Author nodes.

ay be associated with attributes in different feature spaces.
uch graphs with heterogeneity can also be called heterogeneous
raphs or Heterogeneous Information Networks (HINs) [16]. For
nstance, a citation graph in Fig. 1 contains three types of nodes:
uthor, Paper, and Conference; two types of edges: Author-Paper
A-P), and Paper-Conference (P-C). The attributes of Author nodes
ay involve affiliations, while the attributes of the Paper nodes
re the bag-of-words vectors of their abstract and keywords.
To tackle the heterogeneity of graphs, meta-path [17], a com-

osite relation scheme, is widely adopted in various heteroge-
eous graph embedding methods [17–21]. The meta-path can be
iewed as extending the idea of the Morgan index [1,2] to het-
rogeneous graphs to reveal relational relevance by pre-defined
nowledge. Fig. 1 illustrates two meta-paths started from Author

nodes in the citation graph, in which Author-Paper-Author (A-P-
) is a meta-path that indicates the co-author relationships and
uthor-Paper-Conference (A-P-C) is an asymmetric meta-path that

reveals publishing relations between Author and Conference. With
the aid of meta-paths, high-order neighbors are directly con-
nected and the high-order proximity between nodes is preserved
in heterogeneous graphs.

Although the meta-path based methods have achieved some
success in heterogeneous graph embedding, they still suffer from
two severe problems. First, some conventional graph embedding
methods [18,19] overlook the node attributes due to the limits of
the model capacity and expressiveness, consequently performing
poorly in heterogeneous graphs with rich node content attributes.
Second, some GNN-based methods [20,21] with the ability to
incorporate node attributes only utilize limited pre-defined meta-
paths, thus the model’s effectiveness is significantly affected by
the choice of meta-paths. Moreover, these methods usually re-
quire extra domain knowledge since meta-paths are diverse in
particular scenarios. It is usually exhausting to enumerate all
possibilities and examine their importance in advance to obtain
the optimized meta-paths. Hence, existing methods relying on
a set of manually specified meta-paths cannot fully exploit the
semantic relationships in heterogeneous graphs.

To address the aforementioned problems, we propose a novel
method called Meta-path Extracted heterogeneous Graph Neural
Network (Megnn), which adopts the idea of the message passing
paradigm of GNNs to simultaneously encode graph topologi-
cal structure, attribute information and semantic relationships
into node embeddings. As a result, Megnn can automatically ex-
tract effective meta-paths during the message passing blue over
trainable graph structures, which provides explainable conclu-
sions and favorable interpretability for the model’s effectiveness.
Besides, since there may exist some challenges in the joint op-
timization of the trainable graph structures and the message
passing paradigm, we extend the heterogeneous convolution and
2

message passing into multiple channels with the consistency
regularization. In this way, the performance and generalization
of the proposed methods can be further enhanced.

Specifically, we firstly apply multiple sophisticatedly designed
heterogeneous convolution modules to the raw heterogeneous
graph after projecting the attributes of nodes of various types into
the same feature space by type-specific transformations (or pre-
processing techniques). In this stage, all types of relations in the
raw heterogeneous graph are assigned with different trainable
weights and combined into the convolved graph. The trainable
weights redirect the flow of message aggregation, indicating the
relevance between connected nodes by the importance of their
relations. Then we perform the message passing on the convolved
graphs across layers to generate the node embeddings for the
initial heterogeneous graph and introduce channel consistency
regularization to enhance the robustness and stability of the
model. Owing to the proposed heterogeneous convolution, the
node features are guided to flow through the trainable paths, thus
valuable meta-paths can be discovered and extracted during the
optimization of Megnn. In this way, explainable insights about
the characteristics of graphs in specific scenarios can also be
excavated.

In summary, our work makes the following major contribu-
tions:

(1) We propose a novel heterogeneous graph neural network
named Megnn that can learn effective node representations.
Meanwhile, the model is capable of discovering and ex-
tracting the most expressive meta-paths, thereby providing
explainable insights about specific data.

(2) We introduce the heterogeneous convolution module based
on the intrinsic properties of meta-path schemes to generate
trainable heterogeneous graph structures. Besides, we intro-
duce the multi-channel mechanism and devise the channel
consistency regularizer to further enhance the performance
and stability of the model.

(3) We conduct a suite of comprehensive experiments to eval-
uate the effectiveness of the proposed method. The results
not only show the superiority of Megnn compared with the
state-of-the-art methods but also verify the interpretability
of meta-paths extracted by Megnn.

2. Related work

2.1. Plain graph embedding

Plain graph embedding methods are performed in homoge-
neous graphs, i.e., with a single type of nodes and edges. Some
representative works include Deepwalk [22] and node2vec [23],
which adopt truncated random walk on graphs to generate the
corpus sequences followed by a skip-gram model [24] to train the
embeddings. LINE [25] proposes to learn the node representations
by preserving the first-order and second-order proximity. Apart
from these random walk based methods, there are some other
studies based on deep neural networks like SDNE [26] and based
on matrix factorization such as GraRep [27], NetMF [28] and
NetSMF [29]. However, all of these methods only utilize the topo-
logical structure, ignoring the attribute information and semantic
relationships.

2.2. Attributed graph embedding

As many graphs in reality contain not only topological struc-
tures but also node attributes, a wide variety of models have
been proposed for attributed graphs. ANRL [30] proposes a neigh-
bor enhancement autoencoder to jointly integrate graph struc-

tures and node attribute information into node representations.
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ANE [31] enforces the representations learned from structures
nd attributes to be consistent and complementary by a carefully
esigned loss. GCN [9] and GraphSAGE [12] propose to aggregate
he neighbor attributes layerwise while exploring the topologi-
al structure implicitly. GAT [10] introduces the graph attention
echanism to measure the different contributions of the neigh-
ors in aggregation. These methods have achieved considerable
mprovements in various tasks in homogeneous graphs. However,
hey fail to encode the heterogeneity into representations when
pplied in heterogeneous graphs.

.3. Heterogeneous graph embedding

Heterogeneous graphs consist of multiple types of nodes and
dges, which render it difficult to preserve both the structure
nformation and the pair-specific relational knowledge into node
mbeddings appropriately. Considering that meta-paths contain
stimable prior knowledge, Metapath2vec [18] designs a meta-
ath based random walk and utilizes the skip-gram model to
erform heterogeneous graph embedding. HERec [19] first trans-
orms the heterogeneous graph into multiple homogeneous
raphs based on different meta-paths and finally fuses the rep-
esentations learned from these graphs. There are methods that
lso leverage co-occurrence information [32] and apply transfor-
ations into a unified space [33]. However, these methods have

o discard node attributes limited by model capacity.
Owing to the success of Graph Neural Networks (GNNs) to

ffectively learn representations for graph-structured data, a va-
iety of methods based on GNNs have been extended to model
eterogeneous graphs and encode the attribute information into
epresentations. GATNE [34] focuses on the multiplexity of het-
rogeneous graphs and proposes to learn base embeddings, edge
mbeddings and attribute embeddings to generate the ultimate
ode embeddings. RGCN [35] adapts GCN [9] to transform the
ode into multiple feature spaces for each relation. HAN [20]
ntroduces the attention mechanism in the fusion of the em-
eddings learned from meta-path based neighbors. MAGNN [21]
roposes to intra-aggregate the nodes along the meta-path be-
ond the aggregation of various meta-path based neighbors. More
ecently, GTN [36] proposes a novel layer to generate and select
mportant local structures, whereas the layer proposed requires
igh time and space complexity, which limits its applications.

. Preliminary

.1. Attributed heterogeneous graph

A heterogeneous graph G = (V, E) consists of a set of vertices
and a set of edges E with a node type mapping function fv :V →
v and an edge type mapping function fe : E → T e. T v and
e denote the pre-defined sets of node types and edge types,
espectively, with |T v

| + |T e
| > 2.

To represent G more concretely, the heterogeneous graph G
an be decoupled into multiple homogeneous and bipartite sub-
raphs that only contain two types of nodes and a single type of
dge. Let N be the number of nodes including all types of nodes,
.e., N = |V|. The heterogeneous graph can be represented as a set
f sparse adjacency matrices {Ae|e ∈ T e

}, where Ae ∈ {0, 1}N×N is
the adjacency matrix corresponds to edge type e. Note that each
adjacency matrix is extended to include all types of nodes in the
graph.

An attributed heterogeneous graph is a heterogeneous graph
endowed with an attribute representation for each node, i.e., G =

V, E,X), where X ∈ RN×M is the attribute matrix that encodes M
attributes for each node.
3

3.2. Meta-path scheme

A meta-path scheme P of length l is a path defined in the
heterogeneous graph G = (V, E), and is denoted as the form of
T1

R1
−→ T2

R2
−→ · · ·

Rl
−→ Tl+1 (abbreviated as P = T1T2 · · · Tl+1),

where Rl ∈ T e denotes the edge types. It describes a composite
elation R = R1 ◦ R2 · · · ◦ Rl between nodes of type T1 and Tl+1,
here ◦ is the composition operator on relations. For simplicity,
e also refer to P as the composite relation R, i.e., P = R.

3.3. Meta-path based neighbors

Given meta-path P = T1T2 · · · Tl+1, some nodes of type Tl+1
are connected to the nodes of type T1 by this meta-path. These
nodes are referred to as meta-path based neighbors to each other.

3.4. Meta-path based graph

A meta-path based graph directly represents the connectivity
of meta-path neighbors. Given a meta-path P describing the
composite relation R = R1 ◦ R2 · · · ◦ Rl, the adjacency matrix of
the meta-path based graph is generated by the multiplication of
adjacency matrices of all different relations as

AP = AR1AR2 · · ·ARl , (1)

where AP ,AR1 , . . . ,ARl ∈ {0, 1}N×N .

4. Methodology

In this section, we elaborate on the details of the proposed
Meta-path Extracted heterogeneous Graph Neural Network
(Megnn). The framework of Megnn is illustrated in Fig. 2. The
original heterogeneous graph is transformed by multiple inde-
pendent heterogeneous convolutions to generate various train-
able graph structures in each layer. With the message passing
along the layers in each channel, meaningful meta-paths are
extracted and effective node representations are obtained. To
strengthen the stability of the model and the extracted meta-path
schemes, heterogeneous convolutions and message passing are
parallelly conducted in separate channels and the embeddings
learned from different channels are regularized to be similar in
the latent space.

4.1. Meta-path generation by GNN

Somemethods [18,20,21] leverage the meta-path based graphs
to learn node representations for heterogeneous graphs and
achieve competitive performance. However, given a meta-path of
length l, the multiplications of adjacency matrices of the bipartite
sub-graphs are performed l times to obtain the meta-path based
graph. It is usually exhausting and time-consuming to enumerate
a variety of meta-paths of varying lengths and compute their
meta-path based graph.

As the meta-path based graphs benefit the model by explicitly
capturing the information of high-order neighbors that imply
meta-path semantics, we found it is similar to the paradigm of
GNNs [37] which implicitly aggregates messages from high-order
neighbors by stacking layers. Hence, we take full advantage of
the strength of GNNs and meta-path semantics and propose to
generate diverse meta-paths by exploiting the message passing
paradigm of GNNs.

First, we directly apply GNNs to heterogeneous graphs without
considering heterogeneity. Formally the framework of general
GNNs can be formulated as follows:

M(l)
= agg (l)(H(l−1)

;A(l)), (2)
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Fig. 2. The overall framework of Megnn. The left part depicts the topology of the original heterogeneous graph and the shapes of nodes indicate the node types. In
he middle of the figure, the convolved heterogeneous graphs are represented by the adjacency matrices, where the types of edges are distinguished by colors and
he shade of colors indicates the learned weights of edge types. The right part describes the combination of node embeddings learned from multiple channels.
H(l)
= update(l)(H(l−1),M(l)), (3)

where the aggregation function agg (l)(·) is defined in the lth layer.
It computes the messages from the representations in the pre-
vious layer and aggregates them based on the adjacency matrix
A(l). Specifically, A(1)

= A(2)
= · · · = A(L) always satisfies

on a vanilla graph. The update(l)(·) is a function to combine the
representation of the node itself in the previous layer and the
result of neighborhood aggregation computed by agg (l)(·). The
hidden feature of nodes in the lth layer of the neural network
is denoted as H(l)

∈ RN×d(l) , where N is the number of nodes in
the graph and d(l) is the dimension of the features in lth layer.
The initial features in 0-th layers are usually taken as the node
attributes, i.e.,

H(0)
= X. (4)

In particular, GCN [9] is a typical and successful GNN model.
For simplicity, we take GCN as an example to demonstrate the
relevance between GNNs and meta-path based connectivity. In
essence, GCN can be derived from Eqs. (2) and (3) when agg(·)
and update(·) are set as

agg (l)(H(l−1)
;A(l)) = Â(l)H(l−1)W(l), (5)

update(l)(H(l−1),M(l)) = σ (M(l)), (6)

where σ is the non-linear activation function ReLu(·); Â(l)
=

D̃(l)
−

1
2 Ã(l)D̃(l)

−
1
2 and W(l) denotes the symmetric normalized ad-

jacency matrix and the linear transformation in the lth layer,
respectively. Here Ã(l)

= A(l)
+ I and D̃(l) is the degree matrix of

Ã(l). By stacking L layers, the node representations learned from
GCN can be written as

H(L)
= σ (Â(L)σ (Â(L−1)

· · · σ (Â(1)XW(1))W(L−1))W(L)). (7)

Intuitively, the message aggregation paradigm of GNNs im-
plies the consecutive multiplication of the adjacency matrices.
To be more explanatory, we remove the nonlinear activation
function, in other words, let σ (x) = x, hence the multiple weight
matrices across consecutive layers could be collapsed into a single
linear transformation. We formulate this overall linear transfor-
mation into the message function in the first layer for clarity. Thus
the ultimate representations of the nodes can be rewritten as

H(L)
= Â(L)Â(L−1)

· · · Â(1)XW(1), (8)

where W ∈ RM×d, M is the dimension of nodes attributes and d
is the output dimension of the weight matrix W(1).

It is observed that Eq. (8) is equivalent to directly aggre-

gating features from the L-order neighbors connected by some

4

meta-path schemes, with their weights co-determined by the
symmetric normalizations of L layers. For GCN, Â(1)

= Â(2)
=

· · · = Â(L), since A(1)
= A(2)

= · · · = A(L) always satisfies and
the symmetric normalization is also identical across layers.

In this paper, we propose Meta-path Extracted heterogeneous
Graph Neural Network (Megnn) to generalize Eq. (8) to hetero-
geneous graphs. Concretely, we propose a novel heterogeneous
convolution module F (l)(·) for each layer to generate different
meta-path structures, thus effective meta-path schemes can be
generated and extracted. The proposed model can be formulated
as follows:

H(L)
= A(L)

convA
(L−1)
conv · · ·A(1)

convXW
(1), (9)

A(l)
conv = F (l)({Ae|e ∈ T e

}), (10)

where A(l)
conv ∈ RN×N and {Ae|e ∈ T e

} denotes the set of bipartite
graphs in the heterogeneous graph. The details of heterogeneous
convolution module F (l)(·) are stated later in Section 4.2.

With F (l)(·) transforming the heterogeneous graph into a con-
volved graph that automatically learns the weights of different
types of edges, a meta-path of length two can be extracted by the
multiplication of two convolved adjacency matrices. It is worth
noting that the explicit multiplication of adjacency matrices can
be avoided under the message passing framework of GNNs as the
calculation of Eq. (9) can be accomplished from right to left. This
significantly reduces the whole time complexity from O(LN3

+

NMd) to O(LN2d + NMd).

4.2. Heterogeneous convolution

The core idea of heterogeneous convolution module F (l)(·) is
to generate diverse and trainable convolved graphs to explore
different local relational structures, thus the favorable meta-path
schemes can be automatically extracted. The conceptual descrip-
tion of heterogeneous convolution is illustrated in Fig. 3

A naive approach for the construction of the convolved graph
is to assign each bipartite graph a normalized coefficient and
calculate their linear combination, i.e.,

A(l)
conv = F (l)({Ae|e ∈ T e

}) =

∑
e∈T e

αeAe, (11)

where T e denotes the edge type set of the graph and αe is
a layer-wise independent parameter to be learned indicating
the contribution of the sub-graph of type e to the convolved
structures.

The naive approach in Eq. (11) has two obvious drawbacks.
First, the parameters are independently learned in different lay-
ers, indicating that the sub-structures of extracted meta-paths
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Fig. 3. A conceptual description of heterogeneous convolution.
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L

ay not correlate to each other. Still taking an example on a
itation graph, we may expect both the structure A-P in the 1st
ayer and P-C in the 2nd layer are important at the same time
so that the meta-path scheme A-P-C can be extracted. Therefore,
t is essential to capture the relationship between the convolved
raph of adjacent layers. Second, the length of generated meta-
ath schemes is always equal to the number of GNN layers,
hus the L-layer model cannot extract relatively short meta-
ath schemes in heterogeneous graphs. This defect limits the
bility of the model to utilize shallow semantic relationships,
hich may also possess essential dependencies between nodes.
ence, a mechanism to learn variable-length meta-path schemes
s required when multiple GNN layers are stacked.

To address the first issue, we introduce the type-wise weight
haring mechanism into our heterogeneous convolution module,
hich is intuitively shown in Fig. 4. Recalling that the naive
pproach assigns each edge type a learnable weight, we natu-
ally decompose this edge type weight as the product of the
mportance of the source node type and the target node type,
.g., the importance of A-P can be obtained by multiplying the
ode importance of A and P. Note that there are two importance

vectors in each layer, s(l) for the source node types and t (l) for
he target node types, since A-P and P-A should have different
mportance in a directed heterogeneous graph. With two train-
ble vectors that indicate source and target node type importance
espectively, we share the importance vector of source node type
n the current layer with the importance vector of target node
ype in the previous layer. Hence, the local structures learned
rom consecutive layers could better correlate to each other.

In order to enable GNNs to learn variable-length meta-path
chemes, we additionally introduce an identity matrix I ∈ RN×N

into the heterogeneous convolution module and learn an inde-
pendent parameter as its importance. The essential insight behind
adding the identity matrix is to provide the model an alternative
to decrease the influence of all types of edges and mainly focus
on the node itself. When the importance of the identity matrix
increases, the GNN layer performs aggregation mostly on the
node itself, thus producing little contribution to the expansion of
meta-path schemes.

Given the above statement, this heterogeneous convolution in
lth layer is collectively formulated as

A(l)
conv = α

(l)
I I +

∑
(e1,e2)∈T e

α
(l)
(e1,e2)

A(e1,e2), (12)

where α
(l)
I and α

(l)
(e1,e2)

are the normalized coefficients for the
identity matrix and the edge type (e1, e2), respectively. They can
be calculated as follows:

α
(l)

=
exp(s(l)e1 t

(l)
e2 ) , (13)
(e1,e2) z(l)

5

α
(l)
I =

α′(l)
I

z(l)
, (14)

z(l) = exp(α′(l)
I ) +

∑
(e1,e2)∈T e

exp(s(l)e1 t
(l)
e2 ). (15)

Here α′(l)
I denotes the unnormalized weight of the identity ma-

trix in the lth layer, s(l) and t (l) denotes the importance vec-
tor of source node type and target node type, respectively. The
type-wise weight sharing mechanism can be formally written as

s(l) = t (l−1) (2 ⩽ l ⩽ L). (16)

.3. The multi-channel mechanism

After stacking L heterogeneous convolution layers, a set of
eta-paths can be extracted with their contributions calculated
y multiplying the edge type importance across layers.
It is noted that the trainable graph structures have to be ini-

ialized randomly, which poses challenges to prevent the model
rom falling into local optimum in the training stage. Hence, we
ntroduce the multi-channel mechanism and devise the channel
onsistency regularization to further improve the performance of
he model and the generalization of the extracted meta-paths.

Concretely, in each channel, L GNN layers are stacked thus
ultiple sets of meta-paths and node representations are ob-

ained. Considering that node representations learned from var-
ous meta-path based augmentation should be similar in the
ame latent space, we propose to restrain the node embeddings
earned from different channels to be close during the training
hase. With C channels employed in the model and L GNN layers
tacked in each channel, representations of different channels in
he Lth layer are denoted as {Z(1), Z(2), . . ., Z(C)

}. The ultimate
epresentations learned from Megnn are calculated by average
ll distributions:

¯ =
1
C

C∑
c=1

Z(c). (17)

During training, we introduce an extra channel consistency regu-
larization loss into the model which additionally minimizes the
distributional distance between Z̄ and Z(c) by Frobenius norm,
i.e., minimize

Dist(Z(c), Z̄) = ∥Z(c)
− Z̄∥

2
F . (18)

hen, the channel consistency regularization loss can be defined
s the sum of the distances between each Z(c) and the central
epresentations Z̄ as Eq. (19). Thus we can enforce the model to
earn similar representations from various meta-path structures.

con =
1
C

C∑
∥Z(c)

− Z̄∥F . (19)

c=1
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Fig. 4. The general idea of the type-wise weight sharing mechanism. In each layer, there is a source type vector and a target type vector. Different colors represent
different node types and the shade of the color indicates the importance of the node type it represents. The source type vector and target type vector are shared
between adjacent layers.
From another perspective, the heterogeneous convolution can
e viewed as the process of data augmentation on heterogeneous
raphs, in which different relational graph structures, i.e., meta-
ath schemes, are either enhanced or weakened. In each chan-
el, GNNs are mainly trained with the reweighted edges de-
ermined by heterogeneous convolution. Therefore, the multi-
hannel mechanism can be regarded as multiple data augmen-
ation on the original heterogeneous graph, and the channel
onsistency regularization can be viewed as the constraint on
he augmentation. Through the multi-channel mechanism, the
roposed MEGNN can learn more effective and robust node rep-
esentations.

.4. The objective function

For the task of node classification, the representations ob-
ained by Eq. (17) are applied with a fully connected layer fol-
owed by a softmax layer. With P labeled nodes among all N
odes in heterogeneous graph, a standard cross entropy loss is
mployed on the labeled nodes as the supervised classification
bjective:

sup =
1
P

P∑
i=1

Yi · log Softmax(FC(Z̄i)), (20)

where Yi is the one-hot label vector for the ith node and FC(·)
refers to the fully connected layer.

In each epoch, we employ both the supervised classification
loss in Eq. (19) and the channel consistency regularization loss in
Eq. (20). Hence, the overall loss of Megnn is

= Lsup + λconLcon, (21)

here λcon is a hyper-parameter that controls the balance be-
ween the supervised classification loss and the channel consis-
ency regularization loss.

.5. Meta-path interpretation

With the aid of the heterogeneous convolution module, the
mportance of meta-paths can be calculated by multiplying the
mportance of each edge type on the path. For example, when
nly two layers are stacked in the model, the importance score
f meta-path A-P-A is obtained by multiplying the weight of edge
ype A-P in the first layer by the weight of edge type P-A in the
ast layer.

Now we calculate the importance of the meta-paths extracted
y Megnn for further interpretation. For simplicity, we firstly
ssume the number of channels is one. Given a meta-path P =

1T2 · · · TL+1, the importance of the meta-path tP be calculated as

(1) (2) (L)

P = αR1

αR2
· · · αRL

, (22)
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where the coefficient α
(k)
Rk

is the weight optimized in Eq. (12). It
could either correspond to α

(k)
TkTk+1

representing the importance
of edge type TkTk+1 or correspond to α

(k)
I representing the impor-

tance of the identity matrix in the kth heterogeneous convolution
layer.

More generally, we denote the set of the importance of all
meta-paths in the cth channel as {tcP1

, tcP2
, . . . , tcPQ

}, where Q
is the total number of possible meta-paths. With the ultimate
representations obtained by averaging different channels, the
overall importance of meta-path Pi is calculated as

tPi =
1
C

C∑
c=1

tcPi
. (23)

Based on the calculation of meta-path importance, Megnn is
able to interpret its effectiveness and provide explainable insights
about datasets.

5. Experiments

To demonstrate the effectiveness and interpretability of the
proposed Megnn, we conduct extensive experiments on real-
world graph datasets, including node classification, meta-path in-
terpretation and the ablation study of heterogeneous convolution
as well as the sensitivity of hyper-parameters.

5.1. Dataset

We use the raw datasets provided in [20], i.e., ACM,1 DBLP2
and IMDB,3 with their statistics shown in Table 1, and preprocess
them as follows:

• ACM. Papers published in different conferences including
KDD, SIGCOMM, MobiCOMM, SIGMOD and VLDB are ex-
tracted and divided into three classes (Data Mining, Wire-
less Communication, Database). This dataset consists of three
kinds of nodes, including 3025 Paper nodes (P), 5845 Author
nodes (A) and 57 Subject nodes (S). There are four types of
edges (P-A, A-P, P-S, S-P). Paper nodes are the target nodes
to be classified and labeled by the conferences they are
published in.

• DBLP. A subset of DBLP dataset is extracted after preprocess-
ing, containing 14,328 Paper nodes (P), 4057 Author nodes
(A) and 20 Conference nodes (C) and four types of edges
(P-A, A-P, P-C, C-P). In this heterogeneous graph, there are
four research areas including Database, Data Mining,Machine
Learning and Information Retrieval. Author nodes are the
target nodes and labeled by their main research areas.

1 http://dl.acm.org/.
2 https://dblp.uni-trier.de.
3 https://www.imdb.com/.

http://dl.acm.org/
https://dblp.uni-trier.de
https://www.imdb.com/
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etailed statistics of the datasets.
Dataset # Node Node types Edge # Features Target node Dataset splitting # Classes

ACM 8927
# Paper (P) : 3025
# Author (A) : 5845
# Subject (S) : 57

# P-A : 9889
# P-S : 3025 1902 Paper

# training : 600
# validation : 300

# test : 2125
3

DBLP 18,405
# Paper (P) : 14,328
# Author (A) : 4057
# Conference (C) : 20

# P-A : 19,645
# P-C : 14,328 354 Author

# training : 800
# validation : 400

# test : 2,857
4

IMDB 9317
# Movie (M) : 3189
# Actor (A) : 4435

# Director (D) : 1693

# M-A : 9563
# M-D : 3189 479 Movie

# training : 640
# validation : 320

# test : 2229
3

• IMDB. A subset of IMDB dataset is extracted which contains
3189 Movie (M), 4435 Actor (A) and 1693 Director (D) and
four types of edges (M-A, A-M, M-D, D-M). For IMDB dataset,
the task is to classify the Movie nodes into three genres:
(Comedy, Action, Drama). In this preprocessed dataset, there
are no movies that belong to two categories. In addition, it is
worth mentioning that this dataset is imbalanced compared
with ACM and DBLP, where the numbers of Drama movies
and Comedy movies are three times and two times as large
as the number of Action movies, respectively.

For the citation datasets (ACM and DBLP), the features of Paper
nodes are the bag-of-words representations of their keywords.
For nodes without attributes, each Author node is represented by
the features of their own papers and each Conference node is rep-
resented by the features of papers published in that conference.
For the IMDB dataset, the features of Movie nodes are the bag-of-
words representation of different plots. Likewise, each Actor node
is represented as bag-of-words features of the movies they played
in and each Director node is represented as bag-of-words of the
features of the director’s movies.

5.2. Baselines

To evaluate the effectiveness of Megnn in heterogeneous
graphs, we compare Megnn with different state-of-the-art meth-
ods. Based on the characteristics of these methods and how
they are applied in heterogeneous graphs, these methods are
categorized into three groups: conventional graph embedding
methods, GNN methods based on pre-defined meta-paths, and
GNNs methods based on modeling heterogeneity. The list of
baseline methods is listed as follows:

Conventional graph embedding methods:

• Deepwalk [22] is a random walk based graph embedding
method designed for homogeneous graphs. Here we ig-
nore the heterogeneity of nodes and edges and perform
Deepwalk in the whole heterogeneous graph.

• Metapath2vec [18] is a heterogeneous graph embedding
method adapted from Deepwalk, which learns embeddings
from meta-path based random walks. Here we test all meta-
paths and report the best results.

GNN methods based on pre-defined meta-paths:

• GCN [9] is a homogeneous graph neural network that per-
forms convolutional operations to update the embeddings.
Here we apply GCN in all meta-path based homogeneous
graphs and report the best results.

• GAT [10] is a homogeneous graph neural network that con-
siders attention mechanism to update the embeddings. Here
we apply GAT in all meta-path based homogeneous graphs
and report the best results.

• HAN [20] is a heterogeneous graph neural network that
leverages node-level attention and semantic-level attention
to obtain node embeddings.
7

• MAGNN [21] is a heterogeneous graph neural network that
proposes to aggregate the intermediate nodes along the
meta-path instances with intra- and inter-aggregation.

GNN methods based on modeling heterogeneity:

• RGCN [35] is a heterogeneous graph neural network adapted
from GCN, which learns specific transformation in each layer
for each type of edges.

• GTN [36] is a heterogeneous graph neural network that
transforms the heterogeneous graph into multiple newmeta-
path based graphs and learns node embeddings via graph
convolutional network.

5.3. Parameter settings

For a fair comparison, we set the dimension of ultimate em-
beddings to 64 for all models. The splitting of the training set,
validation set and test set is exactly the same for all methods
above. For methods based on random walk, including Deepwalk,
Metapath2vec, we set the window size to 5, walk length to 100,
walks per node to 40, and the negative samples to 5. For methods
based on pre-defined meta-paths, the meta-path candidate sets
are set as {P-A-P, P-S-P}, {A-P-A, A-P-C-P-A} and {M-D-M, M-A-
M} for ACM, DBLP and IMDB, respectively. For MAGNN, we adopt
the relational rotation encoder for the meta-path instances as the
authors suggested. For GCN, GAT and RGCN, we set the dropout
rate to 0.5, the number of attention heads to 8 and the number
of base transformations as 4. For HAN and GTN, we run the
released code with suggested hyper-parameters. For the proposed
Megnn, we apply early stopping with a patience of 50 and employ
the Adam optimizer with a learning rate of 0.005 and the L2
regularization parameter of 0.001. The number of channels and
layers are both set as 4 for the balance of performance and
efficiency.

5.4. Node classification

The performance of all kinds of methods is evaluated in the
task of node classification. Approximately 20% of the target nodes
(i.e. Paper nodes for ACM, Author nodes for DBLP and Movie nodes
for IMDB) are used for training, 10% of the nodes are used for
tuning the hyperparameters and the remaining 70% nodes are
used for testing. We run each method for 10 times and report
the average Micro-F1 and Macro-F1 in Table 2.

As shown in Table 2, the proposed method Megnn outper-
forms other baselines on all datasets, especially on the unbal-
anced IMDB dataset. We can also conclude from the table that the
GNN-based methods which simultaneously combine topological
structures and node attributes generally perform better than con-
ventional graph embedding methods that neglect node attributes.
This verifies the benefit of incorporating node attributes into
the model. Besides, it is interesting that Metapath2vec performs
even worse than DeepWalk on the ACM dataset, which indicates



Y. Chang, C. Chen, W. Hu et al. Knowledge-Based Systems 235 (2022) 107611

T
E

c
h
d
g
b
a
t
i
r
a
O
t

i
b
m
f
t
G
i
H
m
l
t
l
e
t
e
t

5

c
c
a
f

able 2
xperiment results (%) in the node classification task.

ACM DBLP IMDB

MiF1 MaF1 MiF1 MaF1 MiF1 MaF1

DeepWalk 80.87 81.31 79.91 78.35 55.81 55.95
Metapath2vec 67.46 67.56 87.36 85.79 56.05 46.60

GCN 90.86 90.93 92.14 91.18 62.22 53.86
GAT 90.22 90.30 92.12 91.34 61.72 56.56
HAN 91.03 91.10 92.71 92.51 63.14 57.09
MAGNN 90.85 90.63 93.72 92.71 64.86 58.39

GTN 91.34 91.49 93.57 92.18 65.10 58.55
RGCN 92.39 92.49 92.91 92.17 63.78 55.17

Megnn 92.57 92.66 94.84 94.22 67.80 62.73

that the methods based on limited pre-defined meta-paths may
have negative impacts on the model’s effectiveness. This is also
demonstrated by the fact that GCN, GAT and HAN that utilize
pre-defined meta-paths perform worse in most cases compared
to other methods that directly model the edge type heterogeneity,
i.e., RGCN and GTN. It indicates that the heterogeneity of graphs
should be carefully modeled beyond pre-defined meta-paths, oth-
erwise the models may ignore some meaningful local structures
in the graphs. Though the method MAGNN achieves rather com-
petitive performance against GTN while only using limited meta-
path schemes, in essence, it can also be viewed as a special case
of the models that automatically capture heterogeneity. With the
relational rotational encoder, it could extract additional hetero-
geneity semantics within the meta-path sequences. However, this
ability is still limited within the given meta-path schemes. On
account of Megnn generating different meta-paths and training
their weights, it can actually both learn meta-path knowledge
and discover effective graph local structures. We will verify the
effectiveness of extracted meta-paths next.

5.5. The interpretability of extracted meta-path

We conduct an experiment to verify the interpretability of
meta-paths extracted by Megnn. In this experiment, we stack
four heterogeneous convolution layers on DBLP, and present the
importance of extracted meta-paths of the initial epoch and the
final epoch in Figs. 5(a) and 5(b), respectively. As Author is the
node type to be classified, hence we only show the importance
of meta-path schemes targeted at Author nodes.

We firstly focus on the initial importance of extracted meta-
paths in Fig. 5(a). We could observe that meta-paths with middle
lengths have relatively high weights. This is because the weight of
αe and αI are both uniformly initialized, thus whether meta-path
schemes expand is subject to a Bernoulli distribution. Totally,
the extracted meta-paths in the initial epoch are determined
by the initialization strategy and cannot reflect the semantic
relationships in the heterogeneous graph.

Then we examine the meta-paths extracted by Megnn of the
final epoch in Fig. 5(b). It is obvious that the top three meta-
paths are A-P-C-P-A, A-P-C-P and A-P-C-P-C, which collectively
contributes approximately 80% importance among all meta-path
schemes. The most significant meta-path A-P-C-P-A is the conven-
tional meta-path usually used in the citation graph. It suggests
that Megnn can learn some meta-paths consistent with pre-
defined domain knowledge. Besides, Megnn also discovers some
important meta-paths that are not included in the pre-defined
meta-path set. For example, A-P-C-P also ranks top of the ex-
tracted importance. This meta-path scheme reveals the semantic
relationships that the authors’ research fields are similar to the
papers co-published at the same conferences with these au-
thors’ papers, which is reasonable and commonly neglected by

conventional meta-path based methods.

8

Table 3
Quantitative results for the efficiency of Megnn and the baselines. We record
the total number of parameters and the training time per epoch in milliseconds
(ms). For convenience, we take the result of GCN as 1, and record the relative
multiples of other methods.

# params Multiples Training time (ms) Multiples

GCN 22.9k 1 8.14 1
GAT 23.1k 1.01 10.64 1.31
HAN 54.4k 2.38 95.75 11.76
MAGNN 62.5k 2.73 103.41 12.70
GTN 102.4k 4.47 118.75 14.58
RGCN 114.7k 5.01 18.38 2.26

Megnn 92.2k 4.03 35.75 4.39

Besides, we also observe that another conventional meta-
path A-P-A is not indicative as expected, i.e., merely contributes
about 4% importance to the ultimate representations. We reason
that the importance of different semantic relationships varies
according to the properties of datasets and co-authorship does
not suggest adequate information may be due to its sparsity in
this dataset. With the interpretation above, we conclude that
Megnn is able to discover significative meta-path structures and
provide insights about graph data by meta-paths importance.

5.6. Efficiency analysis

Now we firstly show the time complexity of the proposed
Megnn and then provide the results and the analysis in the
efficiency experiments.

Megnn comprises the heterogeneous convolutions in multiple
hannels and the channel consistency regularization. For each
eterogeneous convolution module, it only requires training ad-
itional (|T e

| + 1) parameters to transform the heterogeneous
raph, and its time complexity is O(|E| |T e

|), where |E| is the num-
er of edges in the graph. The message propagation in Megnn in
single channel has the complexity of O(L|E|d+NMd), where d is
he dimension of node embeddings and M is the number of orig-
nal node attributes. The complexity of the channel consistency
egularization is O(CNd). If we use C channels, which is usually
small number like 4, the complexity of the whole Megnn is
(CL|E||T e

| + CL|E|d + CNMd + CNd), which is both linear with
he number of nodes and edges in the graph.

Practically, we record the number of parameters and the train-
ng time averaged in each epoch of Megnn and other GNN-based
aselines in Table 3. We do not include the random walk-based
ethods in the comparison for fairness, since the way they per-

orm batch training is different from GNNs which are usually
rained in the transductive setting. As is shown in the table,
TN is the most time-consuming model over all methods, as
t requires consecutive multiplication of the adjacency matrix.
AN and MAGNN have large overhead as they have to spend
uch time on the calculation of attentions. In contrast, Megnn

everages the multi-channel heterogeneous convolutions to avoid
he computation of attention, thus its training time only increases
inearly with the number of channels, which is set as 4 in the
xperiments. To summarize, the results in the table demonstrate
hat Megnn can learn the node representation effectively and
fficiently, and is superior to the baseline methods considering
he balance between performance and computation.

.7. Ablation study

In addition to analyzing the interpretability of Megnn, we
onduct an ablation study to validate the effectiveness of the
omponents of the proposed model. We derive four Megnn vari-
nts and evaluate their performance in the three datasets. The
our variants are described as follows:
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uantitative results (%) for ablation study of Megnn.

ACM DBLP IMDB

MiF1 MaF1 MiF1 MaF1 MiF1 MaF1

Megnn 92.57 92.66 94.84 94.22 67.80 62.73
Megnn-hetconv 85.39 84.06 90.71 90.47 60.58 54.54
Megnn-id 91.36 91.51 94.09 93.91 64.40 56.57
Megnn-sharing 91.98 92.10 93.59 92.73 65.50 61.27
Megnn-reg 92.32 92.44 93.81 93.11 66.44 60.97
Megnn-channel 91.84 91.26 92.17 91.22 65.83 59.81

• Megnn-hetconv: Remove the whole heterogeneous convolu-
tion module in each layer, i.e., the heterogeneity of nodes
and edges is ignored.

• Megnn-id: Remove the identity matrix included in each het-
erogeneous convolution module. In this case, the model can
only extract meta-path schemes that have exactly the same
length as the number of layers.

• Megnn-sharing : Remove the type-wise weight sharing mech-
anism in each heterogeneous module, indicating that the
structures of extracted meta-paths in different layers do not
correlate with each other.

• Megnn-reg : Remove the channel consistency regularization
and still keep the mechanism of multi-channels in the model,
i.e., λcon = 0.

• Megnn-channel: Remove the mechanism of multi-channels
in the model, including the message passing in multiple
channels and the channel consistency regularization.

The results of the ablation study are reported in Table 4.
s can be seen, Megnn achieves better performance than the

Megnn-reg , demonstrating channel consistency regularization is
effective for generating better representations. If we further re-
move the whole multi-channel mechanism as Megnn-channel, the
model presents further performance degradation, which verifies
the necessity of the multi-channel mechanism to improve the
model’s performance. Besides, we can conclude that the proposed
whole heterogeneous convolution module has a significant con-
tribution to the effectiveness of the method based on the perfor-
mance degeneration of Megnn-hetconv. More specifically, missing
the identity matrix or the type-wise weight sharing mechanism
within the heterogeneous module leads to varying degrees of
performance decline. Note that the performance of Megnn-id has
only a slight decrease on DBLP, indicating that long meta-path
schemes are more beneficial on the dataset. This also corresponds
to the majority importance of A-P-C-P-A shown in Fig. 5(b) and
the significant performance promotion in the DBLP case of Fig. 7

when the model’s depth varies from 1 to 4.

9

5.8. Parameter analysis

In this section, we investigate the sensitivity of the hyper-
parameters in Megnn. More specifically, we evaluate how the
number of channels, the number of stacked layers and the co-
efficient of the channel consistency regularization λcon affect the
results of node classification.

The number of channels. The effect of channels is studied in
two aspects, including both performance and stability. We run
Megnn on DBLP with different number of channels for 10 times,
and record the average Micro-F1, Macro-F1 and their standard
deviation. The results of performance and stability are shown
in Figs. 6(a) and 6(b), respectively. As the growth of channels,
Megnn gains considerable improvements in Micro-F1 initially and
emains steady ultimately. Meanwhile, the standard deviation
f Megnn declines by a big margin at first and continues to
all slowly. Based on the analysis above, we can conclude that
egnn can achieve better performance and higher stability with
ore channels. Empirically the number of channels is set to 4
onsidering the balance between performance and efficiency.
The number of layers.. As we can observe in Fig. 7, the

est depth varies according to the datasets. Concretely, Megnn
an quickly capture adequate information on ACM and IMDB
atasets with only two or three layers, and has slightly poorer
erformance with layers continuing to grow. For DBLP, the model
ith four layers achieves significant improvement in Micro-F1
ompared to shallow Megnn with two or three layers and tends
o become stable when the model’s depth further increases. It
ndicates the meta-paths of over length four contain unique in-
ormation neither included in 1-order nor 2-order neighbors in
he dataset.

The impact of λcon. We investigate the sensitivity of the
hannel consistency regularization coefficient λcon. The results on
hree datasets are illustrated in Fig. 8. As λcon grows, the per-
ormance of Megnn increases at first and reaches the peak, then
egins to drift down slowly. The reason for this two-stage change
s that Megnn requires an appropriate weight to control the
onsistency of learned representations and a larger regularization
ay deteriorate the model’s ability to exploit diverse meta-path
tructures.

. Conclusion

In this paper, we present Megnn for node representation
earning in heterogeneous graphs. Megnn tactfully adopts the
essage passing paradigm to encode the graph topological struc-

ures, node attributes and semantic relationships into node em-
eddings simultaneously. Besides, Megnn can extract significa-
ive meta-paths without any prior knowledge of the specific
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cenarios, providing explainable conclusions to the model’s ef-
ectiveness. The comprehensive experiments on three real-world
atasets demonstrate that the proposed Megnn outperforms the
tate-of-the-art methods in the task of node classification and
erify the interpretability of extracted meta-paths. Moreover,
he core component of Megnn, i.e., heterogeneous convolution,
as a considerable superiority to model the graph heterogeneity
nd strong adaptability and operability for large-scale datasets.
ith the aid of its domain-independent nature and efficiency,
 M

10
egnn is applicable for heterogeneous graphs in different hetero-
eneous scenarios, e.g., e-commerce systems, in-game friendship
ecommendations and so on.
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