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A B S T R A C T

Recently, graph convolutional networks (GCNs) have been applied to heterogeneous information network (HIN)
learning and have shown promising performance. However, the performance of GCNs degrades attributed to the
recursive propagation, which leads to an indistinguishable embedding for the distinctly heterogeneous node.
Besides, the inherently coupled paradigm of GCNs limits their applications on large-scale graphs. In this paper,
we tackle these problems by proposing a disentangled framework named Heterogeneous Information Network
to Grid (HIN2Grid) for heterogeneous network learning. We innovatively design an effective and efficient
strategy to transform the graph data into semantic-specific grid-like data, which can be effectively processed by
convolutional neural networks (CNNs), thus explicitly overcoming the drawbacks of the inherent paradigm of
GCNs. Such a CNN-based learning scheme also contributes to extracting more expressive features and consume
less time and memory. We further propose dual attention mechanisms to capture the importance of various
grid-like data and heterogeneous semantics, thus providing interpretability and robustness for HIN2Grid. We
conduct experiments on four datasets and the results show that HIN2Grid significantly outperforms the state-
of-the-art methods, gaining a improvement on node classification of about 2% to 10% and a 2 to 5 times
promotion on running speed.
1. Introduction

In the real world, data often emerges as graph structures with a
diversity of nodes and relations such as social networks and biolog-
ical networks. Graph embedding, which aims to project nodes into
a low-dimensional space while preserving structural information and
properties of the network, has aroused attention in various fields (Chen,
Li, Qian, Zheng, & Hu, 2020; Fei, Ren, & Ji, 2020; Huang, Chen, Ye,
Hu, & Zheng, 2020; Tang, Chen, Cui, & Wei, 2019; Vo, Al-Obeidat,
& Bagheri, 2020). After obtaining the embedding, they can be readily
applied to various downstream tasks. Generally, graph-based applica-
tions can be categorized into node classification tasks or link prediction
tasks, such as properties predictions (Ata, Fang, Wu, Li, & Xiao, 2017;
Huang & Zitnik, 2020; Lin, Quan, Wang, Ma, & Zeng, 2020) and social
recommendations (Chen, Jiang, et al., 2020; Chen, Wu, Hong, Zhang,
& Wang, 2020; Ma et al., 2020).

So far, most graph embedding models have been designed for homo-
geneous graphs which have a single type of nodes and edges. However,
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the real-world data is rich in various types and relations, which is often
presented as heterogeneous graphs. As shown in Fig. 1, the graph con-
tains three types of nodes, i.e. author, paper and conference. Besides,
the relations among these nodes are different. For example, the relation
from author to paper is ‘write’ and the relationship between conference
and paper is ‘accept’ or ‘accepted’. In order to capture the rich semantic
information, more and more heterogeneous graph embedding methods
have been proposed. Roughly speaking, there are some meta-path based
random walk methods (Dong, Chawla, & Swami, 2017; Fu, Lee, & Lei,
2017) inspired by DeepWalk (Perozzi, Al-Rfou, & Skiena, 2014), some
methods (Tang, Qu, & Mei, 2015a; Xu, Wei, Cao, & Yu, 2017) base
on the first-order and second-order similarity inspired by LINE (Tang
et al., 2015), some methods (He et al., 2020; Hu, Li, Shi, Yang, & Shao,
2020) base on the message-passing framework (Gilmer, Schoenholz,
Riley, Vinyals, & Dahl, 2017) that utilize graph convolutional networks
(GCNs) to preserve local structural information. Among these methods,
GCN-based methods achieve state-of-the-art performance in most cases
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, thereby drawing significant attention in both academic and industrial
domains.

However, GCNs possess inherently coupled framework that repeti-
tively propagates features along the edges among nodes during convo-
lution, which limits its flexibility. Graph convolution can generally fall
into spectral convolution and spatial convolution. Despite spatial-based
models avoid certain complex computation such as the decomposition
of Laplacian matrix existed in the spectral-based methods, they need
to store all the intermediate embedding and suffer significant compu-
tational overhead due to the neighborhood expansion problem (Chiang
et al., 2019), which leads to a great challenge for developing scalable
GCN algorithms. In addition, when the graph convolutional layers are
stacked too more, GCNs have a high risk of over-smoothing which
leads to undistinguishable node embeddings. To address the above
problems, various strategies have been introduced, including neighbor
sampling (Hamilton, Ying, & Leskovec, 2017), layer sampling (Chen,
Ma, & Xiao, 2018), and sub-graph training (Gao, Wang, & Ji, 2018).
Although introducing these strategies can overcome aforementioned
problems to some extent, they are still fettered to the inherent frame-
work of GCN, i.e. repeatedly performing the complex aggregations
among neighbors of nodes during graph convolution.

As to convolution operators, convolutional neural networks (CNNs)
(LeCun, Bottou, Bengio, & Haffner, 1998) have achieved great perfor-
mance on grid-like data (e.g. images) and are widely used in computer
vision tasks and natural language processing tasks. With the trainable
local filters, high-level information can be extracted automatically.
The successful design of CNNs sheds light on improving directions on
graph embedding. Intuitively, if CNNs can be applied to graphs, the
aforementioned problems can be fully solved. There are two reasons:
(1) the local receptive field and sharing weights of CNNs greatly reduce
the number of parameters, and CNNs avoid the inflexibility of suffering
recursive neighborhood expansion. Since CNNs have both faster speed
and lower memory cost than GCNs, it is effortless to deal with large-
scale graphs and dense graphs. (2) The CNN-based framework also
avoids the over-smoothing problems of GCNs. Nevertheless, applying
CNNs on graphs faces two severe challenges: (1) the nodes in graphs
have no fixed number of neighbors and (2) there is no ranking infor-
mation to put neighboring nodes in a certain order. Therefore, how to
effectively transform the heterogeneous graphs to structured grids is
the key problem.

In this paper, we propose a disentangled CNN-based framework for
heterogeneous graph learning named Heterogeneous Information Net-
work to Grid (HIN2Grid). Considering the heterogeneity of HINs, meta-
paths are utilized to reconstruct adjacent relations and the original
graph is divided into several semantic-specific subgraphs. To consider
the scalability of HINs, an efficient strategy is proposed to transform
graph data into grid-like data. Concretely, HIN2Grid selects the most
influential first-order and second-order local neighbors for each node
and combine them to structured grid by their degrees, without being
restricted to complex pre-processing and comparison in some previ-
ous efforts. Then, CNNs are employed to operate on the generated
grids so as to automatically extract effective information and speed up
convolution while saving memory. Additionally, instead of separating
the target node and its corresponding neighboring nodes during grid
generation, a central fused mechanism is proposed to fuse their features
into the grid. In this way, each row of the grid-like data contains the
features from central nodes and their local structures which improves
the expressiveness of the model. Lastly, HIN2Grid also designs dual
attention mechanisms to obtain optimal combinations of various grid
pixels and multifaceted semantic embeddings in a hierarchical manner,
which enables the model to be robust and comprehensive.

In summary, we highlight our contributions as follows:

• We propose an effective and efficient strategy to transform graph
data into grid-like data, and with the central fusion mechanism,
the structured grids contain rich features from both central nodes
2

and corresponding local structures.
• We propose a novel framework HIN2Grid, which employs CNNs
to extract useful features automatically from the generated grid-
like data. Owing to CNNs, HIN2Grid has advantages in computa-
tional efficiency and memory saving since it avoids the inflexibil-
ity of suffering recursive neighborhood expansion.

• We design grid-level and semantic-level attention mechanisms
to capture the importance of different grid pixels and multi-
faceted semantic information, which improves the robustness and
provides interpretability to the model.

• We evaluate HIN2Grid on four datasets, and extensive experi-
ments demonstrate the superiority of HIN2Grid as compared to
state-of-the-art models on accuracy and complexity in various
tasks.

2. Literature review

2.1. HIN embedding

Network embedding refers to project nodes into a low dimensional
space then they can be applied in various downstream tasks. So far,
most network embedding methods have been designed for homoge-
neous graphs. Nevertheless, the data in the real world is highly complex
with the existence of multiple types of objects and relations. Therefore,
more and more HIN embedding methods are proposed in recent years.
The main challenges in HIN embedding are rich semantics and variable
graph scales. Instead of utilizing traditional embedding algorithms such
as SkipGram (Mikolov, Chen, Corrado, & Dean, 2013), recent works
designed various methods that enable models to contain both seman-
tic and structural information. HAN (Wang, Ji, et al., 2019) adopts
node- and semantic-level attentions to balance the importance among
different nodes and meta-paths. RSHN (Zhu, Zhou, Pan, Zhu, & Wang,
2019) considers different relations based on coarsened line graphs and
employs graph neural networks to model interactions between nodes
and their neighbors. HGT (Hu, Dong, Wang, & Sun, 2020) utilizes node-
level and edge-level parameters to obtain heterogeneous attention over
each edge. Although these GCN-based models take heterogeneity into
account, they have to make a balance in computational efficiency and
accuracy since GCN is an internal coupling framework that limits their
flexibility.

2.2. Graph convolutional network on large graphs

Graph convolutional networks (GCNs) aim to extend neural net-
works to deal with graph-structured data, which have shown great
popularity in tackling graph analytics problems. However, GCN as a
full-batch framework, matrix operations are performed over the whole
graph, which leads to expensive computation and memory cost when
applied to dense and large graphs. In order to solve the aforementioned
problems, the mini-batch strategy is proposed in GraphSage (Hamilton
et al., 2017). Since embedding updating is based on a small batch, the
model can speed up convergence and reduce memory requirements.
Nevertheless, it is still limited to high computational costs due to the
neighborhood expansion problem. FastGCN (Chen et al., 2018) utilizes
global importance sampling to tackle the problem of complex calcula-
tion, but it needs extra requirement for importance weight computation
and becomes worse when GCN goes deep. VR-GCN (Ye, Li, Fang, Zang,
& Wang, 2019) reduces the size of sampled neighbors of each node
by variance reduction. Although the sample size is reduced, it needs
extra space to store all the intermediate embeddings of all the nodes
and thus resulting in high memory requirements. Cluster-GCN (Chiang
et al., 2019) partition the original graph into several subgraphs by
graph clustering techniques. However, the effectiveness of the model
heavily depends on the selected graph clustering algorithm. LGCN (Gao
et al., 2018) proposes a framework that utilizes a subgraph selection
strategy to improve GCNs. In particular, LGCN finds neighbors for

each target node and ranks them by their feature values to generate
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Fig. 1. (a) An example of heterogeneous graph which include three types of nodes: author, paper and conference. (b) Meta-paths. (c) Meta-path based neighbors.
grid-like data. Although LGCN achieves improvements, it suffers from
heavy data-preprocessing, e.g. features ranking and selection, and the
subgraph may introduce noise from long-distance positions. Although
there are many related and similar methods, most of them are designed
for homogeneous graphs. Hence, it is necessary to study the scalability
of heterogeneous graph embedding algorithms.

2.3. Analysis on similar graph embedding models

In this section, we compare our work with existing HIN embedding
models (Hu, Dong, Wang, & Sun, 2020; Schlichtkrull et al., 2018; Wang,
Ji, et al., 2019; Wang, Zhang, et al., 2019; Zhu et al., 2019) base
on graph convolutional networks and representative efficient meth-
ods (Chen et al., 2018; Chiang et al., 2019; Gao et al., 2018; Hamilton
et al., 2017; Ye et al., 2019) for processing large graphs. As mentioned
before, GCN-based HIN embedding models have a variety of ways
to deal with the heterogeneity of graphs. However, they are suffered
from the repeated computations and unnecessary data transfers in GCN
training and inference (Jia et al., 2020). Although many sampling
strategies have been proposed to speed up the process of convolution,
they are still restricted by the neighborhood expansion problem or lead
to more space requirements that make models inflexible.

Proceeding from this point, the proposed disentangled framework
adopts an efficient strategy to transform graph data into grid-like data
while preserving informative features of local structures. There are two
advantages to this design. Firstly, the grid-like data can be effectively
processed by CNNs, thus the proposed model has an advantage in
efficiency and memory saving over GCN-based models. Secondly, it
explicitly avoids the inflexibility of the graph convolution paradigm,
so it is not restricted to complex neighborhood expansion and over
smoothing problems. Besides, we also propose dual attention mecha-
nisms to enhance the robustness and expressiveness of the proposed
model. Experiments show that our work is revolutionary compared
with the state-of-arts in efficiency and accuracy.

3. Preliminary

In this section, we formalize definitions and introduce backgrounds
of HIN embedding.

Definition 1 (Heterogeneous Information Network). A heterogeneous
information network is composed of a node set 𝑉 and a link set 𝐸 which
can be denoted as 𝑔 = (𝑉 ,𝐸). It along with the node type mapping
function 𝜌 ∶ 𝑉 → 𝑀 and edge type mapping function 𝜑 ∶ 𝐸 → 𝑅, where
𝑀 and 𝑅 denote the sets of the node and edge types, and |𝑀|+ |𝑅| > 2.

Fig. 1(a) is a toy example of HIN on a citation network. The graph
consists of multiple node types (i.e., author, paper and conference)
3

and edge types (i.e., write and accept). In heterogeneous information
network, two nodes are connected via different semantic paths, which
are defined as meta-paths.

Definition 2 (Meta-Path). A meta-path is defined as a sequence path be-
tween different types of nodes in the form which describes a composite
relation R = 𝑅1 ◦ 𝑅2 ◦ ⋅⋅⋅ ◦ 𝑅𝑙 between objects 𝑂1 and 𝑂𝑙.

As shown in Fig. 1(b), two authors are connected with multi-
ple meta-paths, i.e. Author–Paper–Author (APA) and Author–Paper–
Conference–Paper–Author (APCPA). The two meta-paths represent dif-
ferent semantics. For example, the APA indicates the two authors share
the same research direction, while APCPA means two authors may be
interested in certain scientific areas.

Definition 3 (Meta-Path based Neighbors). A node’s meta-path based
neighbors are a set of nodes connected with the node through meta-
paths.

As we can see in Fig. 1(c), 𝑎1 connects with 𝑎3 bases on the meta-
path Author–Paper–Author and 𝑎2 is a meta-path based neighbor of 𝑎3
on the meta-path APCPA. As discussed above, different meta-paths re-
flect different semantics. Therefore, the impact of different meta-paths
on graph learning is ought to be considered.

Problem setting: (Heterogeneous network embedding)
Heterogeneous network embedding aims to learn an embedding

function 𝜏 ∶ 𝑉 → 𝑅𝑑 that maps the nodes 𝑣 ∈ 𝑉 in the network into a
low-dimensional space with 𝑑 ≪ |𝑉 |, while preserving local structural
properties of nodes for various downstream tasks. In this work, we focus
on the task of semi-supervised node classification.

4. The proposed model

In this section, we introduce the proposed framework for hetero-
geneous graph embedding. The overview of HIN2Grid is presented
in Figs. 2 and 3. Firstly, taking the heterogeneity into account, we
utilize meta-paths to transform the original heterogeneous graph into
several semantic-specific homogeneous graphs. After that, influential
neighboring nodes of each node are selected within its 2-hop neighbors
according to their degree and combined as a structured grid. Then, we
design a central fusion mechanism to enhance the expressive power of
the grid by fusing features of the node and its influential neighbors.
Next, the grid-like data is fed into CNNs thus the high-level informa-
tion can be extracted automatically. Finally, grid-level attention and
semantic-level attention are utilized to learn the weights of various grid
pixels and semantic embeddings, thus provide the optimal combination
of them to obtain the final embedding.
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Fig. 2. An illustration of the framework for the proposed HIN2Grid. Firstly, the original graph is divided into semantic-specific homogeneous subgraphs by different meta-paths, and
then the graph data is transformed into grid-like structures and fed into CNNs. Next, the extracted features are combined by attention mechanisms to obtain the final representation.
Fig. 3. Detailed process in the EXTRACTION in Fig. 2. Firstly, we select the most influential first-order and second-order neighbors for the target node (blue node, id 1) and rank
them by degree, then assemble them to generate structured grids. Then, we fuse the features of grid-like data as well as the target node, and use them as the input of CNNs. In
this plot, we set k=6 and the features of nodes are 4.
4.1. Generation of grid-like data

Due to the diversity of nodes and edges in HINs, heterogeneous
graph structures have abundant and complex semantic information. In
order to analyze the heterogeneity, we utilize the widely used semantic
connection patterns, meta-path (Sun, Han, Yan, Yu, & Wu, 2011), to
transform the original graph into several homogeneous subgraphs, thus
various semantics can be fully explored.

Owing to the intrinsic non-Euclidean property of graphs, CNNs
cannot be employed to these subgraphs directly since there is no fixed
structure and node order existed in graphs. Therefore, a reasonable
and efficient way should be designed to transform graphs into grid-like
structures. Next, we discuss the two difficulties involved.

1. Which nodes are important to the target node?
According to the homophily hypothesis (Xu, et al., 2020, 2020;

Yang & Leskovec, 2014), the closer the nodes are, the more likely they
have similar properties. Therefore, the nodes close to the target ones
have the priority to be selected. However, data in the real world is
usually sparse, if only one-hop neighbors are selected for the node, the
4

expressiveness of the model would be insufficient. On the basis of the
analysis and experiments in Chen, Wei, Wang, and Guo (2019), Kipf
and Welling (2016), the first-order and second-order neighboring nodes
contain rich local structural information. Consequently, we select both
the one-hop and two-hop nodes as the neighbors of target nodes. In
this way, the receptive field of each node is expanded to improve the
expressive power of the following constructed grids, and higher-order
nodes are not considered to avoid the disturbance caused by noise.

2. How to transform the selected nodes into structured grid?
Before transforming the selected nodes into grid-like data, we

should notice that there is no ranking information in the graphs. Some
previous studies adopt feature ranking (Gao et al., 2018) or attention
mechanism (Liu, Wang, & Ji, 2020) to fix orders of nodes. However,
they are restricted to the heavy calculation that limits their flexibility.
The study of influential research (Tangmunarunkit, Govindan, Jamin,
Shenker, & Willinger, 2002; Zhao, Liu, Wang, Li, et al., 2017) indicates
improving directions, which demonstrates that the degree of nodes
reflects the influence of the node and topological properties of graphs.
As a common character of graphs, the higher degree of the node, the
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greater its influence. What is more, it is suitable and convenient for
calculating the degree of nodes that provides the potential advantages
of processing large and dense graphs. Consequently, the selected nodes
are ranked by their degrees and assembled to construct structured grids.

Suppose the target node has 𝑓 features, and 𝑘 neighbors are selected
o construct the structured grid, the dimension of the grid-like data
s 𝑘 × 1 × 𝑓 where 𝑓 can be seen as the channels of the grid, and
× 1 is the size of grid-like data in each channel. To better understand

he construction process of grid-like data, we give a brief explanation
n Fig. 3. Taking node 1 as an example, its influential neighboring
odes (i.e., first-order neighbors 𝑁1 and second-order neighbors 𝑁2)
re selected and permutated according to their degree. Note that some
raphs may be very sparse, if |𝑁1| + |𝑁2| < 𝑘, the default value of
nfulfilled grid is set to features of target nodes to highlight themselves.
dditionally, since the features of the node itself can best reflect its
roperties in the graph, we inject the features of the target node
n the grids, thus the target node is coupled with the corresponding
eighbors and the constructed grid contains rich information of the
ocal structure. Concretely,

𝐺 = 𝐹𝑛 ⋅ 𝜃𝑏𝑖𝑎𝑠 + 𝐹𝑐 ⋅ (1 − 𝜃𝑏𝑖𝑎𝑠), (1)

here 𝐹𝑛 ∈ 𝑅(𝑘×1×𝑓 ) denotes the grid-like data combined by the features
f selected neighbors and 𝐹𝑐 ∈ 𝑅(𝑘×1×𝑓 ) denotes the features expanded
rom the central node. 𝜃𝑏𝑖𝑎𝑠 is the coefficient to balance the impact of
wo sides.

.2. Feature transformation

After obtaining the structured grid, HIN2Grid employs CNNs to
xtract significant features. Specifically, given a constructed grid, CNNs
ith kernel size 𝑠 is utilized to extract features, which can be written
s follows:

𝑢 = 𝐶𝑜𝑛𝑣(𝑝(𝐺)), (2)

here 𝐺 is the grid-like data, 𝑝 denotes transformation function,
.g., MLP. 𝐶𝑜𝑛𝑣(⋅) denotes a 1-D CNN to extract features, in which
he stride is set to 1 and without padding strategy. 𝑥𝑢 is the obtained
mbedding that contains high-level information in the grid.

.3. Grid-level attention mechanism

In GAT (Veličković et al., 2018), different neighbors show different
mportance in node embedding. Similarity, we assume that different
ixels in the grid contribute differently to node learning in HIN2Grid.
o explore the importance of each pixel, we adopt grid-level attention
echanism to improves the expressive power and robustness of the
odel. Due to the high variance of data in graphs, we extend our
echanism to multi-head attention to stabilize the learning process.
he improved embedding is shown as follows:

′
𝑢= 𝑥𝑢 + ( 1

ℎ

ℎ
∑

𝑖=1
𝐴𝑡𝑡𝑖) ⋅ 𝑥𝑢, (3)

where 𝐴𝑡𝑡𝑖 ∈ 𝑅((𝑘−𝑠+1)×1×𝑓 ) denotes the attention matrix, ℎ is the num-
ber of attention heads. Additionally, we employ two-layer nonlinear
transformations to map the embedding to a low dimensional space:

𝑥′𝜙 = 𝑔(𝑥′𝑢), (4)

where 𝑥′𝜙 is the node embedding under the meta-path 𝜙. Given the
meta-path set {𝜙1, 𝜙2,. . . , 𝜙𝑝}, we can get 𝑝 groups of semantic-specific
embeddings, denoted as {𝑥′ , 𝑥′ ,… , 𝑥′ }.
5

𝜙1 𝜙2 𝜙𝑝
4.4. Semantic-level attention mechanism

As mentioned before, different meta-paths reveal different seman-
tic information. After obtaining 𝑝 groups of semantic embeddings,
HIN2Grid utilizes semantic-level attention to fuse various semantics to
obtain comprehensive embeddings. To learn the attention weights of
meta-paths, the node embedding is transformed through a nonlinear
transformation, is shown as follows:

𝑥∗𝜙𝑖 = 𝜎(𝑊 ⋅ 𝑥′𝜙𝑖 + 𝑏), (5)

where 𝑊 is a learnable weight matrix, 𝑏 is a bias vector and 𝜎(⋅) de-
notes the activation function. Furthermore, we calculate the similarity
between embeddings and the attention vector 𝑎, and then average them
to obtain the attention weight of each meta-path:

𝑤𝜙𝑖 =
1

∣ 𝑉 ∣
∑

𝑗∈𝑉
𝑎𝑇 ⋅ 𝑥∗,𝑗𝜙𝑖

, (6)

here 𝑎 is a learnable vector and 𝑥∗,𝑗𝜙𝑖
is the semantic specified embed-

ing of node 𝑗 under the meta-path 𝜙𝑖. The weight of meta-path can be
btained by normalizing the attention weights of all meta-paths:

∗
𝜙𝑖

=
𝑒𝑥𝑝(𝑤𝜙𝑖 )

∑𝑝
𝑖=1 𝑒𝑥𝑝(𝑤𝜙𝑖 )

. (7)

The weight 𝑤∗
𝜙𝑖

reflects the importance of meta-path 𝜙𝑖, i.e., a more
important meta-path should have a higher weight. Hence the attention
mechanism provides the interpretability to the model. With the learned
weights, semantic embeddings are fused together to obtain the final
representation of the node:

𝑍 =
𝑝
∑

𝑖=1
𝑤∗

𝜙𝑖
⋅ 𝑥∗𝜙𝑖 , (8)

where 𝑍 ∈ 𝑅1×𝐶 , 𝐶 denotes the number of classes of nodes in the
dataset. Suppose 𝑁𝐿 denotes the training set, for each 𝑙 ∈ 𝑁𝐿 the
real label and predicted label is 𝑌 𝑙 and 𝑍𝑙 respectively. For model
optimization, we minimize the cross-entropy loss with 𝑙2 regularization
defined as follows:

𝐿 = −
∑

𝑙∈𝑁𝐿

𝐶
∑

𝑖=1
𝑌 𝑙
𝑖 ⋅ 𝑙𝑜𝑔(𝑍𝑙

𝑖 ) + 𝜆
∑

𝑤2
𝑎𝑡𝑡, (9)

where 𝑤𝑎𝑡𝑡 denotes learnable parameters in the attention matrix in
Eq. (3), 𝜆 is the constraint coefficient of regularization term. The detail
of the calculation process is illustrated in Algorithm 1.

Algorithm 1 The algorithm of HIN2Grid
Input: An HIN graph 𝑔 = (𝑉 ,𝐸),

meta path set {𝜙1, 𝜙2,… , 𝜙𝑝},
node features {𝐹𝑖, 𝑖 ∈ 𝑉 },
grid dimension 𝐾, fusion coefficient 𝜃𝑏𝑖𝑎𝑠,
regularization coefficient 𝜆;

Output: Final embedding 𝑍,
semantic-level attention weights 𝑤𝑎𝑠;

1: Select neighbors for each node and rank them by degree;
2: Generate grid-like data 𝐺 via Eq. (1);
3: for 𝜙𝑖 ∈ {𝜙1, 𝜙2, ..., 𝜙𝑝} do
4: Learn the updated and improved embedding by Eq. (2) and Eq.

(3);
5: Learn semantic-specific node embedding via Eq. (4);
6: end for
7: Calculate the weights of meta-paths 𝑤𝑎𝑠 via Eq. (7);
8: Calculate the final embedding 𝑍 via Eq. (8);
9: Calculate Cross-Entropy 𝐿 via Eq. (9);

10: Update parameters in HIN2Grid;
11: Return 𝑍, 𝑤𝑎𝑠;
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5. Complexity analysis

In this section, we analyze and compare the time and memory
complexity of the proposed disentangled CNN-based framework and
GCN .

5.1. Complexity of graph convolution networks

Suppose we are given a graph 𝑔 = (𝑉 ,𝐸,𝐴,𝑋), where 𝑉 =
{𝑣1,… , 𝑣𝑁} denotes the vertex set with 𝑁 nodes and 𝐸 denotes the
edge set. A ∈ 𝑅𝑁×𝑁 is the adjacency matrix and X ∈ 𝑅𝑁×𝐹 is the feature
matrix. In each layer of GCN, the embedding of each node are updated
by aggregating the embeddings of neighbors of the node:

𝑍(𝑙) = 𝜎(𝐴𝑋(𝑙−1)𝑊 (𝑙)), (10)

where 𝐴 is the regularized adjacency matrix, 𝑊 (𝑙) ∈ 𝑅𝐹𝑙×𝐹𝑙+1 and
𝑋(𝑙−1) ∈ 𝑅𝑁×𝐹𝑙 are the learnable transformation matrix at the 𝑙th
layer and node embeddings at the (𝑙 − 1)th layer, respectively, and
𝑋(0) = 𝑋. For simplicity and without affecting the analysis, we set
𝐹1 = ⋯ = 𝐹𝑙 = 𝐹 and ignore the heterogeneity of graphs.

For the time complexity of the information aggregation in (10),
𝑋(𝑙)

∗ = 𝐴𝑋(𝑙) cost 𝑂(|𝐸|𝐹 ) and 𝑋(𝑙)
∗ 𝑊 (𝑙) costs 𝑂(𝑁𝐹 2) in time. Hence for

𝐿-layer GCN, the total time complexity is 𝑂(𝐿|𝐸|𝐹 + 𝐿𝑁𝐹 2). For the
memory complexity, 𝐿-layer GCN need to store node embeddings and
transformation matrices in 𝐿 layers, which in total leads to 𝑂(𝐿𝑁𝐹 +
𝐿𝐹 2) in memory.

5.2. Complexity of the proposed framework

The proposed framework utilizes CNNs to extract significant in-
formation from grid-like data. Different from GCN suffers from the
inflexibility of full-batch training, the proposed HIN2Grid can uti-
lize mini-batch training algorithms to improve the training speed and
memory requirement. Suppose we are given a convolutional kernel
𝑘𝑠 ∈ 𝑅𝑆×1, minibatch size 𝐵 and structured grid with the size of
𝐾 × 1 × 𝐹 for each node, where 𝐾 denotes the number of neighbors
we selected for each node. For a fair comparison, here we also do not
consider the heterogeneity. The time complexity of the convolution
is 𝑂(𝐵(𝐾 − 𝑆)𝑆𝐹 2), and the time complexity of grid-level attention
is 𝑂(𝐵𝐻(𝐾 − 𝑆)𝐹 ), where 𝐻 denotes the number of attention heads.
With regard to the memory complexity, storing parameters and node
embeddings requires 𝑂(𝐵𝐹+𝑆𝐹 2+𝐻(𝐾−𝑆)𝐹 ) in memory. We summary
the complexities of the two models in Table 1.

5.3. Complexity comparison

From the analysis above, we can observe that the complexity of
GCN highly depends on the number of nodes and edges in the graph.
Before comparison, it is worth noting that the hyper-parameters in our
method are far less than the number of features and nodes in the graph,
i.e., 𝑆 ≈ 𝐻 ≈ 𝐾 ≪ 𝐹 ≪ 𝑁 . Therefore, our method has the advantage
in computing efficiency and memory saving over GCN on dealing with
large and dense graphs, especially when GCN has many layers.

In this work, we regard the construction of structured grids as
part of data preprocessing. Consider the heterogeneity of graphs, the
semantic-level attention is utilized and its complexity is 𝑂(𝐵𝐹 2). Be-
sides, HIN2Grid can be easily parallelized since the convolution and
attention mechanisms can be parallelized across nodes and meta-paths,
respectively.

6. Experiments

In this section, we evaluate the HIN2Grid in four datasets. We
further analyze the model in accuracy, efficiency and parameter sen-
6

sitivity.
6.1. Datasets

We conduct experiments on four datasets, including ACM (with
three types of nodes: author, paper and subject), DBLP (paper, au-
thor, conference, term), IMDB (movie, actor, director) and PUBMED
(gene, disease, chemical, species). We organize them into heteroge-
neous graphs and summarize them in Table 2.

1. The DBLP dataset we constructed consists of 4057 authors, 8789
terms, 14328 papers, 20 conferences. The authors in this datasets
belong to four classes, including information retrieval, data min-
ing, machine learning, and database. The authors’ research areas
are labeled by the conferences they submitted and their fea-
tures correspond to elements of a bag-of-words represented of
keywords.

2. The IMDB dataset we constructed consists of 4780 movies, 2269
directors and 5841 actors. Features of Movie are obtained from
a bag-of-words of plots. The movies belongs to three categories:
drama, comedy and action.

3. The ACM dataset we constructed consists of 3025 papers, 56
subjects and 5835 authors. Features of Paper are calculated from
a bag-of-words of keywords. The papers are divided into three
areas, including data mining, database and wireless communica-
tion.

4. The PUBMED dataset we constructed consists of genes, diseases,
chemicals, and species from PubMed.1 The features of nodes are
the elements of 200-dim embedding computed by word2vec. The
diseases are labeled for eight categories and each labeled disease
has one label.

6.2. Baselines

To verify the effectiveness of the proposed model, we compare
HIN2Grid with the following state-of-the-art models. The baselines are
divided into three categories: homogeneous graph embedding mod-
els LINE (Tang et al., 2015) and DeepWalk (Perozzi et al., 2014);
random-walk based HIN embedding model HIN2Vec (Fu et al., 2017);
GCN-based HIN embedding model HAN (Wang, Ji, et al., 2019), R-
GCN (Schlichtkrull et al., 2018) and HGT (Hu, Dong, Wang, & Sun,
2020).

1. LINE utilizes the first- and second-order proximity to preserve
structural properties of the graph.

2. DeepWalk is a random-walk based model that employs Skip-
Gram algorithm to generate node embedding.

3. HIN2Vec learns the latent embedding of nodes by conducting
multiple prediction training tasks jointly.

4. HAN adopts both node- and semantic-level attention to guide
embedding generation.

5. R-GCN utilizes relational graph convolutional networks to model
the relations among the nodes.

6. HGT designs node-type and edge-type parameters to obtain the
heterogeneous attention on each edge.

6.3. Parameter settings

For the proposed HIN2Grid, we use Adam (Kingma & Ba, 2014) to
optimize the model and randomly initialize parameters. Besides, we set
the learning rate to 0.01, weight decay to 0.0005, the dropout rate
to 0.4, the number of grid-level attention heads to 10, coefficient of
regularization term 𝜆 to 0.1, kernel size 𝑠 to 2, the dimension of the
hidden embeddings of two nonlinear transformations in Eq. (4) to 128
and 16, respectively. In the proposed model, 𝑡𝑎𝑛ℎ(⋅) is utilized as the

1 https://www.ncbi.nlm.nih.gov/pubmed/.

https://www.ncbi.nlm.nih.gov/pubmed/
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Table 1
Time and memory complexity.

GCN Proposed framework

Time complexity Feature aggregation Transformation Convolution Grid-level attention
𝑂(𝐿|𝐸|𝐹 ) 𝑂(𝐿𝑁𝐹 2) 𝑂(𝐵(𝐾 − 𝑆)𝑆𝐹 2) 𝑂(𝐵𝐻(𝐾 − 𝑆)𝐹 )

Memory complexity Embedding storage Weight storage Embedding storage Weight storage
𝑂(𝐿𝑁𝐹 ) 𝑂(𝐿𝐹 2) 𝑂(𝐵𝐹 ) 𝑂(𝑆𝐹 2 +𝐻(𝐾 − 𝑆)𝐹 )
Table 2
Statistics of four datasets.

Dataset Relations Nodes Avg. Degree Features Edges Labels Meta-Paths

DBLP
Paper-Author

4780 2904.6 334 8799281 4
APA

Paper-Conf APCPA
Paper-Term APTPA

IMDB
Movie-Actor

4057 195.2 1232 917178 3
MAM

Movie-Director MDM
Movie-Year MYM

ACM Paper-Author 3025 740.2 600 2221657 3 PAP
Paper-Subject PSP

PUBMED

Disease-Gene

20163 305.9 200 119819 8

DGD
Disease-Disease DD
Disease-Chemical DCD
Disease-Species DSD
Fig. 4. Computational efficiency experiments on DBLP. For clearly displaying, the
umber of nodes in the training phase is set from 50 to 500.

ctivation function. The selection of the remaining hyperparameters 𝐾
and 𝜃𝑏𝑖𝑎𝑠 depend on the statistical characteristics of datasets, we discuss
them in Section 6.6. For random walk based models, negative samples
per node are set to 5, walk length is set to 50, walks per node are set
to 20, the window size is set to 5. For other compared methods, we
report the results by re-running the released code with suggested hyper-
parameters. The nodes are randomly sampled and split into training set
and test set by a ratio of 0.8:0.2, then evaluated by Micro F1 and Macro
F1 on the test set. For each model, we report the average performance
on 10 repeated processes.

6.4. Classification

To evaluate the embeddings learned from the above algorithms, we
compare HIN2Grid to state-of-the-art models on node classification and
report the Macro-F1 and Micro-F1 in Table 3.

As we can observe from the table, as graph embedding models for
homogeneous graphs, LINE and DeepWalk ignore the heterogeneity of
the network thus perform worse than HIN embedding models. Broadly
speaking, GCN-based models such as HAN and R-GCN usually achieve
better performance because the models aggregate both the features and
7

structural information at each graph convolutional layer. By contrast to
the above models, HIN2Grid significantly outperforms all the baselines
on four datasets and achieves maximum relative improvements of
9.2% to the state-of-art HAN. The improvements derive from both
constructed grid-like data contains rich features of central nodes as well
as their influential neighbors, and high-quality node embedding with
effective information extracted by CNNs.

To further compare the HIN2Grid and HAN, and verify the statistical
robustness of our experimental setup, we calculate confidence intervals
via bootstrapping and report the p-values of a paired t-test between
the two models. From the last line in Table 3, it is obvious that the
improvements of HIN2Grid over HAN are statistically significant with
paired t-test at 𝑝 < 0.05 on all datasets. Overall, the experimental results
demonstrate the effectiveness of HIN2Grid.

6.5. Computational efficiency

In this subsection, we evaluate the proposed model on compu-
tational efficiency. According to the previous discussion, GCN-based
models are inflexible due to the repeated and redundant neighborhood
expansion. To verify this, we compare the proposed model with the
HIN- and GCN-based model HAN, which also uses meta-paths and
attention mechanism to explore the heterogeneity of graphs. In order
to make a fair comparison, we set the same number of training epochs,
i.e. 100 epochs, and the same embedding dimension of hidden layers
for the two models, and record the corresponding average time per
epoch. As to the memory usage, it includes the memory needed for
training the model. Experimental results are reported in Table 4.

From the table, we observe that the proposed model has better
computational efficiency and much more memory saving than HAN,
indicating the effectiveness of the proposed framework that can speed
up the training progress and saving memory to enhance the scalability
of the model. Concretely, we gain improvement of mostly 5 times faster
and 1/3 memory saving than HAN. For further study, we conduct extra
experiments on DBLP. For clear illustration, the number of nodes in the
training phase is set from 50 to 500. We take the size of the whole
training set as the batch size of HAN and the proposed model for fair
comparison and keep 𝐾 fixed. Experimental results are shown in Fig. 4.
From the plot, we can observe that the proposed model is faster than
HAN, and as the number of nodes increases, the time gap between the
two models becomes larger and larger, which verifies the advantage of
HIN2Grid in efficiency.
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Table 3
Experimental results on node classification.

Dataset ACM IMDB DBLP PUBMED

Metrics Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
DeepWalk 0.853 0.849 0.520 0.520 0.868 0.870 0.109 0.139
LINE-1st 0.943 0.933 0.439 0.440 0.919 0.920 0.159 0.174
LINE-2st 0.960 0.960 0.637 0.627 0.872 0.870 0.117 0.233
HIN2Vec 0.836 0.840 0.426 0.427 0.870 0.880 0.359 0.384
R-GCN 0.796 0.800 0.585 0.587 0.877 0.880 0.482 0.512
HAN 0.947 0.947 0.585 0.587 0.930 0.930 0.508 0.535
HGT 0.946 0.947 0.617 0.613 0.919 0.920 0.330 0.370

HIN2Grid 0.984±.008 0.983±.008 0.639±.022 0.64±.021 0.949±.004 0.950±.005 0.529±.018 0.558±.02

+Impv. +3.9% +3.8% +9.2% +9.0% +2.0% +2.1% +4.1% +4.3%

p-value 1.29E−56 1.48E−58 1.23E−34 2.81E−32 1.96E−43 1.20E−44 2.58E−37 8.25E−33
Table 4
Experimental results on computational efficiency.

Dataset ACM DBLP IMDB PUBMED

Hin2Grid Time Memory Time Memory Time Memory Time Memory
0.19 s 1.52 M 0.44 s 3.32 M 0.23 s 1.24 M 0.27 s 3.13 M

HAN Time Memory Time Memory Time Memory Time Memory
0.52 s 3.16 M 2.07 s 8.17 M 0.32 s 2.32 M 0.51 s 9.22 M
Fig. 5. Degree distribution of all nodes of target node type on four datasets. Here the neighboring nodes are based on all meta-paths.
.6. Model analysis

.6.1. Impact of 𝐾
The hyperparameter 𝐾 controls the size of the grid. As mentioned

efore, influential first-and second-order neighbors of target nodes are
elected to construct structured grids. From Fig. 6 we can see that
he performance of the model increases first and then decreases. It
ay probably because that small grids constructed with few neigh-

oring nodes contain less informative features, and also, larger 𝐾
may introduce pointless features to deteriorate the performance of the
model.

Degree information is shown in Table 2 and Fig. 5, we can observe
that graphs from ACM, IMDB and PUBMED datasets are relatively
8

sparse, i.e. their average degrees are 195.2, 740.2, 305.9, respec-
tively. In order to increase the robustness and effectiveness of the
model, a small 𝐾 should be chosen. Whereas the DBLP dataset contains
rich and dense links, has a high average degree than other datasets,
i.e. 2904.6, meaning that most nodes have lots of neighbors. To enable
the constructed grid to contain more information of local structures, a
relatively large 𝐾 is appropriate for it. It is worth noting that the 𝐾 in
our experiments is far less than the average degree of the nodes in the
dataset, which also demonstrates the efficiency of HIN2Grid. Another
point worth highlighting is that although 𝐾=40 for the sparse PUBMED
dataset looks larger than the other two sparse datasets, there are far
more nodes in the PUBMED than in the other two datasets, i.e., more

than 20 thousand, so a ‘large’ 𝐾 is set for PUBMED. In general, the best
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Fig. 6. Analysis of hyperparameter K on four datasets.
size of grids is different and varies from dataset to dataset. For selecting
𝐾, it should not only consider the sparsity of graphs but also consider
the size of the dataset, e.g. the number of nodes.

6.6.2. Impact of 𝜃𝑏𝑖𝑎𝑠
The coefficient 𝜃𝑏𝑖𝑎𝑠 controls the proportion of features from the

central node and its neighbors in the constructed grid. We test the
effect of it in four datasets and report the results in Fig. 7. We can
observe that with the increase of the 𝜃𝑏𝑖𝑎𝑠, the performances raise first
and then start to drop. On one hand, the model should aggregate
features of neighbors to extract local information. On the other hand,
the main features, i.e. features of the central node, are also essential
for the constructed grid-like data. In particular, when 𝜃𝑏𝑖𝑎𝑠 is set to
0 and 1, the generated grids only contains features from neighbors
and central node, respectively. From the figure, we can observe that
in these two settings, the performance of the model decreased sharply,
which reflects the necessity of the proposed central fusion mechanism.
Notably, the optimal 𝜃𝑏𝑖𝑎𝑠 almost differs in different datasets, which
indicates that the balance point between the features of the central
node and its neighbors varies in different tasks.

6.6.3. Impact of grid-level attention
During the grid-like data construction, the influential neighbors

are selected for each node and assembled together to generate the
structured grid. However, the pixels of the grid contribute differently
to node learning. Consequently, grid-level attention with multi-head
mechanism is proposed to consider the importance of the pixels and
stabilize the learning process. Fig. 8 shows the experiments we conduct
on the grid-level attention mechanism. From the figure we observe
that the model with attention mechanism achieves maximum relative
improvements of 23% in IMDB, demonstrating that the effectiveness of
the grid-level attention.

6.6.4. Impact of semantic-level attention
With semantic-level attention, the proposed HIN2Grid can learn the

importance of meta-paths for the specific task automatically. To verify
the effectiveness of it, we take IMDB and PUBMED as examples and
report the attention weights in Fig. 10. From the figure, we observe
that the attention weights of meta-paths in the PUBMED dataset have
9

little difference. Among the meta-paths in PUBMED, the weight of
Table 5
Experimental results on neighborhood selection.

Dataset 2-hop 3-hop 4-hop

DBLP 0.89 0.86 0.83
ACM 0.96 0.96 0.95
PUBMED 0.47 0.45 0.44
IMDB 0.50 0.49 0.47

DGD (Disease–Gene–Disease) has the highest value, in other words,
themes of gene and disease are most closely related. In IMDB datasets,
the importance of MDM (Movie–Director–Movie) is the highest among
all meta-paths and the weight of MYM (Movie–Year–Movie) is the
lowest one. It indicates that the styles of movies directed by the same
director would be similar while the movie genres in the same year
are difficult to be distinguished. What is more, Fig. 9 reports the
experimental results on semantic-level attention. The figures show the
advantages of the semantic attention mechanism which can improve
the performance of the model significantly, about 5% to 50%. From the
analysis above, attention mechanisms cannot only bring interpretability
to the experimental results but also help the model to achieve great
improvements.

.

6.6.5. Impact of neighborhood selection strategy
In order to explore the influence of neighborhood selection on the

HIN2Grid, we use neighboring nodes within hops range in {2, 3, 4} to
construct the grid respectively. Besides, due to the sparsity of datasets
is different, we set large enough K for four datasets to ensure that long-
distant neighbors (e.g. fourth-order neighbors) of each node can be
selected. As shown in Table 5, with the increase of the neighborhood
order, the accuracy of the model declines, proving the stability and
effectiveness of the selection strategy of HIN2Grid. Besides, although
selecting higher-order neighboring nodes to construct grid-like data
sometimes has little impact on the accuracy of the model, it takes more
time to search for long-range nodes inevitably, which would affect the
efficiency of the model.
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Fig. 7. Analysis of hyperparameter 𝜃 on four datasets.
Fig. 8. Experiments of grid-level attention on four datasets.
7. Conclusion

In this paper, we propose a disentangled CNN-based framework
named HIN2Grid for heterogeneous network embedding. Taking the
heterogeneity and scalability of HINs into account, HIN2Grid firstly
decomposes the original graph into several semantic-specific homoge-
neous subgraphs by meta-paths, then transforms them into grid-like
data and takes it as the input to efficient CNNs. In addition, we
also propose dual attention mechanisms to provide interpretability
and robustness for the model. Extensive experiments on four datasets
demonstrate that the proposed model has superior performance to base-
lines. In addition to its excellent accuracy, it also avoids the inherently
coupled paradigm which leads to redundant and repeat computation
in GCN-based models. As a result, HIN2Grid improves computational
efficiency and reduces memory cost.
10
Although experimental results demonstrate the superiority of
HIN2Grid over baselines, there is still room for improvement. In the
proposed framework, the hyper-parameter 𝐾 is fixed for all the nodes
in the graph. However, when it comes to the graph that meets unusual
settings, e.g., half nodes in the graph have lots of neighbors and
the other half have few neighbors, the hyper-parameter may be hard
to set. For future work, we will refine our framework by exploring
other methods to involve certain hyper-parameters in the training
phase of the model so that the appropriate values of them can be
obtained automatically. Moreover, we will also explore the adoption
of the proposed HIN2Grid for other graph-based applications such as
recommendation and fraud detection.
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Fig. 9. Experiments of semantic-level attention on four datasets.
Fig. 10. Semantic-level attention values on two datasets.
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