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AbstrAct
Federated learning has been widely studied 

and applied to various scenarios, such as financial 
credit, medical identification, and so on. Under 
these settings, federated learning protects users 
from exposing their private data, while coopera-
tively training a shared machine learning algorithm 
model (i.e., the global model) for a variety of real-
world applications. The only data exchanged is 
the gradient of the model or the updated model 
(i.e., the local model update). However, the secu-
rity of federated learning is increasingly being 
questioned, due to the malicious clients or central 
servers’ constant attack on the global model or 
user privacy data. To address these security issues, 
we propose a decentralized federated learning 
framework based on blockchain, that is, a Block-
chain-based Federated Learning framework with 
Committee consensus (BFLC). Without a central-
ized server, the framework uses blockchain for the 
global model storage and the local model update 
exchange. To enable the proposed BFLC, we also 
devise an innovative committee consensus mech-
anism, which can effectively reduce the amount 
of consensus computing and reduce malicious 
attacks. We then discuss the scalability of BFLC, 
including theoretical security, storage optimiza-
tion, and incentives. Finally, based on a FISCO 
blockchain system, we perform experiments using 
an AlexNet model on several frameworks with 
a real-world dataset FEMNIST. The experimental 
results demonstrate the effectiveness and security 
of the BFLC framework.

IntroductIon
With the introduction of GDPR (General Data 
Protection Regulation), both industry and aca-
demia began to pay more attention to the privacy 
protection of machine learning. User-generated 
private data should not be exposed or uploaded 
to a central server. Google proposed Federated 
Learning (FL) in 2016 to solve the problem of 
collaborative training for privacy protection. This 
framework proposes a distributed training model 
with two roles: the participating devices and the 
central server. Instead of uploading private data, 
nodes locally update the global model and then 
upload the model updates (i.e., the local gradi-
ents). The central server collects these updates 
and integrates them to form an updated model. 
Because of this privacy feature, FL has been 
attracting researchers’ attention in recent years.

In FL settings, a server performs the central 
operations of update aggregation, client selec-
tion, and global model maintenance. The server 
needs to collect updates from numerous clients 
for aggregation operation, and it also needs to 
broadcast new global models to these clients, 
which puts a high demand on network band-
width. Also, cloud-based servers are affected 
by the stability of cloud service providers [1]. A 
centralized server can skew the global model by 
favoring some clients. Malicious central servers 
can poison the model and even collect clients’ 
privacy from updates. Therefore, the stability, 
fairness, and security of the central server are 
crucial to FL.

An intuitive idea is to remove the server and 
execute the central tasks on distributed clients. 
The blockchain, which is viewed as decen-
tralized storage, can serve as the basis for FL 
training. In detail, we can design protocols to 
execute the aggregation task on clients. BAF-
FLE [2] mentions using blockchain to store and 
share the global model, and perform aggre-
gation with Smart Contracts (SC). The smart 
contracts are computer programs triggered by 
the blockchain events, which are intended to 
automatically execute, control, or document for 
specified tasks. With the removal of the cen-
tral server, the above challenges are avoided. 
However, the computation and network trans-
mission pressure of this task are all transferred 
to the nodes. In particular, when all nodes have 
to deal with consensus tasks, the computational 
overhead is huge.

Zhou et al. [3] propose a decentralized 
multi-community training framework, which uti-
lizes the blockchain to maintain a global model 
within each community. The communities com-
municate with others of the updated models 
following an all-reduce protocol (https://github.
com/baidu-research/baidu-allreduce). Chen et 
al. [4] propose to leverage the blockchain to 
record the updates from nodes and the evalua-
tion of those updates. Underrated nodes may be 
kicked out as a defense against malicious devices. 
However, maintaining multiple blockchains at the 
same time [3] is not conducive to model sharing, 
and nodes in different communities can hardly 
obtain models or records from other communi-
ties. If a community as a whole is malicious, it is 
difficult for other honest communities to detect 
and resist, then a trusty global detection might be 
needed.
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Through the literature review, it would be an 
effective way for blockchain to serve as decen-
tralized storage and replace the central FL servers. 
However, the effi  ciency of consensus is in urgent 
need of improvement. Although storing models 
and updates in blockchain brings many security 
advantages, it is also a huge burden of the storage 
capacity on blockchain nodes. Therefore, how to 
reduce the consumption of a blockchain-based FL 
is also a key challenge.

In this article, we propose a decentralized, 
autonomous blockchain-based FL architecture 
to address these challenges (Fig. 1). The archi-
tecture based on the alliance chain provides the 
node permission control without a centralized 
server. In terms of storage, we design the storage 
pattern on the chain for models and updates, 
by which the nodes can quickly get the latest 
model. Each validated update is recorded and 
kept untampered on the blockchain. Consider-
ing the huge storage consumption on the block-
chain, partial nodes can abandon the historical 
blocks to release the storage space. In terms of 
the block consensus mechanism, a novel com-
mittee consensus mechanism is proposed, which 
only increases a few validation consumptions and 
achieves more stability under malicious attacks. 
In each round of FL, updates are validated and 
packaged by a small number of nodes (i.e., the 
committee). The mechanism allows most honest 
nodes to reinforce each other and continuously 
improve the global model. A small number of 
incorrect or malicious updates will be ignored to 
avoid damaging the model. In the meantime, the 
BFLC training community is flexible, where the 
nodes can join or leave at any time without dam-
aging the training process. Combined with an 
effective incentive mechanism, the nodes who 
contribute can gain actual rewards, thus promot-
ing the development of the whole training com-
munity in a virtuous circle.

Our contributions are summarized as follows:
• We propose a blockchain-based FL frame-

work BFLC, which defi nes the model storage 

patterns, the training process, and a novel 
committee consensus in detail.

• We technically discuss the scalability of 
BFLC, including the node management in 
the community, the analysis of malicious 
node attacks, and the storage optimization.

• We demonstrate the effectiveness of BFLC 
by experiments on a real-world FL dataset. 
We also verify the security by simulating 
malicious attacks.

relAted work
Konecný et al. proposed Federated Learning, 
whose goal is to train a high-quality centralized 
model while training data remains distributed over 
a large number of clients [1]. The network situ-
ation of FL is unreliable and relatively slow, and 
the clients are not always online. In these years, 
FL is applied in many scenarios like video analy-
sis, information inspection and classifi cation, and 
credit card fraud detection, while keeping the per-
sonal data sensitivity safe. The theoretical studies 
of convergence, network latency, or malicious 
attacks on FL are also active fi elds.

The centralized federated server has been 
challenged and questioned increasingly in these 
years. It is a natural thought to keep the con-
cept of server at a minimum or even avoiding 
it completely. The study in [5] assumed that the 
data remains at the edge devices, but it requires 
no aggregation server or any central compo-
nent. Hu et al. [6] proposed a segmented gossip 
approach, which makes full utilization of node-
to-node bandwidth then can achieve a conver-
gence effi  ciently.

Meanwhile, decentralization is the most direct 
way to avoid the above risks. Blockchain, a dis-
tributed ledger technique, can store the histori-
cal operations and keep it tamper-resistant. With 
the aim of the blockchain, collaborative machine 
learning methods can get rid of the centralized 
server and improve security. Blaz et al. [7] pro-
posed a machine learning-based method to fasten 
the transaction signing process. Many real-world 

FIGURE 1. The training process of the proposed BFLC framework. (1) Training nodes acquire the newest 
global model and perform local training. (2) Training nodes send local updates to committee. (3) Com-
mittee validate the updates and record new models or updates onto the blockchain.
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tasks are applying the blockchain-based FL meth-
od, such as Industrial Internet of Things, mobile 
edge computing, cognitive radio networks, and 
Internet of Vehicles.

It is reasonable to assume that the clients in FL 
might be malicious. Therefore, the local updates 
from all clients should be recorded under block-
chain-based FL settings. You et al. [8] focused on 
the stability and convergence speed of FL, and 
proposed a blockchain-based method to address 
these challenges. Umer et al. [9] proposed a 
blockchain-based architecture, which can perform 
parallel learning for multiple global models. Bao 
et al. [10] proposed a public blockchain-based 
FL architecture, which provides trusty consensus 
based on nodes’ data amount and historical per-
formance.

These blockchain-based learning methods 
can effectively record the nodes’ performance to 
reduce malicious attacks. However, there are still 
three main challenges.

Consensus Efficiency: It is an inevitable pro-
cess for blockchain-based methods to reach a 
consensus for each packing block. Considering 
the vast amount of learning nodes, a broadcasting 
consensus is highly time-consuming. Therefore, 
reducing the consensus cost is non-trivial. One of 
the related works [10] selects a leader to execute 
the consensus. However, the criterion relies on 
many outer data.

Model Security: The framework should prevent 
the model from being exposed to unauthorized 
devices and from poisoning. The security of the 
system is rarely studied under blockchain-based 
FL settings.

Framework Scalability: When applying these 
training frameworks to real-world applications, 
we always need to add detailed rules to adapt 
to different scenarios. Therefore, the scalability 
of frameworks determines their scope of appli-
cations.

the ProPosed FrAmework
Federated Learning (FL) enables the machine 
learning algorithms to train across multiple dis-
tributed clients without exchanging their data 
samples. In the original FL settings, one central-
ized server takes control of the training process, 

including client management, global model 
maintenance, and gradient aggregation. During 
each training round, the server broadcasts the 
current model to some participating nodes. After 
receiving the model, nodes locally update it with 
their local data and submit the update gradients 
to the server. The server then aggregates and 
applies the local gradients into the model for the 
next round.

The decentralized nature of blockchain can 
replace the central server. As aforementioned, 
the functions of the centralized server can be 
implemented by the Smart Contract (SC) instead, 
and be actuated by transactions on the block-
chain. To tackle this vision, we propose BFLC, 
which is a Blockchain-based Federated Learning 
framework with Committee consensus. Without 
any centralized server, the participating nodes 
perform FL via blockchain, which maintains the 
global models and local updates. Considering 
the communication cost of FL, we leverage a 
novel delegated consensus mechanism to tack-
le the missions of gradient selection and block 
generation. In the following sub-sections, we 
will elaborate on the various components of the 
framework.

blockchAIn storAge
To enable authority control, the storage of BFLC 
is an alliance blockchain system, and only the 
authorized devices can access the FL training con-
tents. On the blockchain, we design two different 
blocks to store the global model and local update 
(Fig. 2), which are collectively known as learning 
information. For the sake of simplicity, we assume 
that only one learning information is placed in a 
block.

In the beginning, an initialized model was 
placed into the #0 block, then the 0-th round of 
training starts. Nodes access the current model 
and execute local training, and put the verified 
local gradients to new update blocks. When 
there are continuously enough update blocks, 
the smart contract triggers the aggregation, and 
a new model is generated and placed on the 
chain. We should note that the FL training only 
relies on the latest model block, and the histori-
cal block is stored for failure fallback and block 
verification.

We denote the number of required updates 
for each round as k, and denote the number of 
rounds as t = 0, 1, …. Then we have: the # t  (k + 
1) block contains the model of t-th round, which 
is called model block, and the # [t  (k + 1) + 1, 
(t + 1)  (k + 1) – 1] blocks contain the updates 
of t-th rounds, which are called update blocks. 
From an implementation perspective, one model 
block should include: block headers, number 
of round t and global model, while one update 
block includes: block headers, number of round 
t, local update gradient, uploader address and 
update score.

commIttee consensus mechAnIsm
The chain structure of blockchain guarantees 
immutability. Therefore, appending the correct 
blocks to the chain is a crucial component which 
is the consensus mechanisms work for. The com-
petition-based mechanisms append blocks on 
the chain first, whereafter the consensus meets. 

FIGURE 2. The FL storage structure on blockchain system, and the provided functions.
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Conversely, the communication-based generate 
mechanisms reach an agreement before append-
ing blocks.

Considering the computation and commu-
nication cost of consensus, we propose an 
efficient and secure Committee Consensus 
Mechanism (CCM) to validate the local gradi-
ents before appending it to the chain. Under 
this setting, a few honest nodes will constitute a 
committee in charge of verification of local gra-
dients and block generation. In the meantime, 
the rest of the nodes execute local training 
and send the local updates to the committee. 
The committee then validates the updates and 
assigns a score on them. Only the qualified 
updates will be packed onto the blockchain. At 
the beginning of the next round, a new com-
mittee is elected based on the scores of nodes 
in the previous round, which means that the 
committee will not be re-elected. It is note-
worthy that the update validation is a pivotal 
component of the CCM, therefore, we describe 
a feasible approach: the committee members 
validate the local updates by treating their data 
as a validation set, and the validation accura-
cy becomes the score. This is the minimized 
approach that acquires no further operation of 
the committee, but only the basic ability to run 
the learning model. After combining the scores 
from the various committee members, the 
median will become the score of this update.

Working with this mechanism, BFLC can 
achieve these advantages:

High efficiency: only a few nodes will validate 
the updates, rather than broadcasting to every 
node and reach an agreement.

K-fold cross-validation: the committee mem-
bers will not participate in the local training in the 
round. Therefore, the local data of the committee 
are taken as a validation set. As the alternating of 
committee members at each round, the validation 
set changes as well. In this setting, k-fold cross-val-
idation on FL is achieved.

Anti-malevolence: based on the validation 
scores, the corresponding nodes with better per-
formance will be elected by the smart contract 
and constitute the new committee for the next 
training round. That means the selected local data 
distribution is gregarious and the node is not mali-
cious.

model trAInIng
Nodes other than committees perform local train-
ing each round. For security and privacy, raw data 
will be kept in nodes locally, and these nodes only 
upload the gradients to the blockchain. There are 
two main challenges:
• The local data distribution might be not Inde-

pendent and Identically Distributed (non-
IID).

• The devices are not always available.
To address the first challenge, the committee 

consensus mechanism could maximize the gen-
eralization ability of the global model by validat-
ing the local updates with committee members’ 
data distribution [1]. To address the second one, 
only a certain number of local updates are req-
uisite for each round, and we design an initia-
tive local learning progress for nodes. Nodes can 
actively obtain the current global model at any 

time and perform local training. The gradients 
will be sent to the committee and be validat-
ed. When eligible updates are packaged on the 
blockchain, as a reward, tokens can be attached 
to nodes. We will discuss the incentive in the 
next section.

As aforementioned, a certain number of valid 
updates are required for each round. Therefore, 
when the committee validates enough local 
updates, the aggregation process is activated. 
These validated updates are aggregated by the 
committee into a new global model. The aggre-
gation can be performed on the local gradients 
[11] or the local models [12], and the network 
transmission consumptions of these two meth-
ods are equal. After the new global model is 
packed on the blockchain, the committee will 
be elected again, and the next training round 
begins.

dIscussIon
node mAnAgement And IncentIve

The BFLC training process depends on the mutual 
promotion of nodes, and node management is 
also a key part of BFLC. The participant nodes 
can not only access the global model but can 
also upload updates to affect the model. To con-
trol permissions, we have designated the initial 
nodes that constitute the training community to 
be responsible for node management, that is, to 
be the managers. Each device must be verified 
by the managers before joining the training com-
munity. This verification is in blacklist mode: if the 
device has been kicked out of the community for 
misconduct (e.g., submitting misleading updates), 
the device will be rejected.

Depending on the proposed blockchain 
storage structure, the latest global model can 
be quickly found on the chain after new nodes 
joined. Nodes can immediately use the model to 
complete their local tasks, or they can train the 
model with local data and gain rewards. It is note-
worthy that only a certain number of valid updates 
are required for aggregation at each round, and 
only part of the nodes are online to participate as 
well. Therefore, as long as the nodes actively sub-
mit updates, it is likely to participate in the global 
model training and gain rewards.

Nodes in a community can always use the 
model without committing updates, so an effec-
tive incentive is required to encourage nodes to 
train models. To address this problem, we pro-
pose an incentive mechanism called profit sharing 
by contribution.

Permission Fee: Each device should pay for 
the access permission of the global model, and 
these fees are kept by the managers. Nodes then 
have unlimited access to the latest models in the 
community.

Profit Sharing: After aggregation of each 
round, the managers distribute rewards to the cor-
responding nodes based on the scores of their 
submitted updates.

As a result, frequently providing updates could 
earn more rewards, and the constantly updated 
global model will attract more nodes to partici-
pate. This incentive mechanism has high scalabili-
ty to adapt to different real-world applications and 
is worth studying.
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commIttee electIon
At the end of each round, a new committee is 
elected from the providers of validated updates. 
In decentralized training settings, this election 
significantly affects the performance of the 
global model, because the committee decides 
which local updates will be aggregated. Com-
mittee election methods include the following 
categories.

Random Election: New committee members 
are randomly selected from validated nodes. From 
a machine learning perspective, this approach 
improves the generalization of the model and 
reduces overfitting. However, the resistance to 
malicious attacks is weak.

Election by Score: The providers with top vali-
dation scores constitute the new committee. This 
may exacerbate the uneven distribution of sam-
ples due to the absence of partial nodes in the 
committee. However, this approach signifi cantly 
increases the cost of the attack and brings more 
security and stability.

Multi-Factor Optimization: This approach 
considers multiple factors of the devices (i.e., the 
network bandwidth) and the validation scores for 
optimal election. However, this optimization will 
bring additional computing overhead. Therefore, 
this approach should be applied depending on 
the scenarios and requirements.

mAlIcIous nodes
A malicious node is defined as a node sub-
mitting incorrect, malicious model updates. 
The original FedAvg [12] aggregates all the 
updates into a new global model. If there are 
malicious updates, the global model will be 
poisoned and obtains lower performance. As 
aforementioned, under the CCM, the updates 
will be verified by the committee before being 
aggregated. In this sub-section, we theoretical-
ly analyze the factors and the success possibili-
ty of malicious attacks.

We denote the amount of all  nodes as 
N, in which the amount of committee mem-
bers is M ,  and the remaining N  – M  nodes 

are training nodes. Distinctly, a malicious 
update is accepted to the aggregation if and 
only if more than M/2 committee members 
are cooperating. However, the committee 
members are the M of the best performers at 
the last round, which means these malicious 
committee members’ updates are accept-
ed by other M/2 malicious nodes in the last 
committee. It is an infinite dependency loop, 
therefore, as long as there are more than M/2 
honest nodes in the first committee, no mali-
cious node could enter the committee and 
harm the global model.

Considering another extreme situation: the 
malicious nodes conspire together to earn the 
committee seats by pretending to be normal 
nodes. When the malicious nodes hold half 
of the seats, the attack begins. To analyze this 
attack mode, we denote the amount of partici-
pating nodes as A, the percentage of malicious 
nodes in A is q ∈ (0, 1), and the percentage of 
the committee is p ∈ (0, 1). The attack target is 
holding more than (A  p)/2 seats in commit-
tee. We assume that the performance of each 
node is similar. Therefore, the attack success 
probability can be calculated as the probability 
of this event: extracting A  p nodes from A
nodes, more than half of which come from A
 q. By fixing A = 1000, we plot the probabil-
ity change along p and q in Fig. 3. We should 
note that only when the malicious percentage 
is greater than 50 percent, the attack success 
probability is remarkable. This conclusion is 
similar to the 51 percent attack in the Proof-
of-Work blockchain system. In a decentralized 
community, the malicious nodes should hold 
51 percent of the computational resources to 
attack the system, where the cost far outweighs 
the benefit. The historical models and updates 
are stored on the blockchain, therefore, fail-
back is always an option after the attack hap-
pened.

storAge oPtImIZAtIon
In real-world applications, storage overhead 
is an important factor that determines the 
hardware requirements for the training devic-
es. Based on the above-mentioned blockchain 
storage scheme (Fig. 2), the latest model 
can be quickly accessed. Although historical 
models and updates can provide post-disas-
ter recovery, they also occupy huge storage 
space. Here, we give a simple and feasible 
storage overhead reduction scheme: nodes 
with insufficient capacity can delete histori-
cal blocks locally, and only keep the latest 
model and updates of the current round. In 
this way, the problem of insufficient storage 
space can be eased, while the ability to recov-
er and verify is retained on the core nodes. 
However, the shortcomings of this method are 
also obvious. The credibility of the blockchain 
decreases with the deletion. In a mutually dis-
trusting community, each node may not use 
this scheme for security concerns.

Therefore, trusted and reliable third-party stor-
age may be a better solution. The blockchain only 
maintains the network address where each model 
or updated file is located and records of mod-
ification operations. Other nodes interact with 

FIGURE 3. The attack success probability changing along with p and q.
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the centralized storage to access the model and 
updates. This centralized storage will be respon-
sible for disaster recovery backup and distributed 
fi le storage services.

Future work
Transmission Effi  ciency: The storage and syn-

chronization of the blockchain consume huge 
hardware resources, not only the hard disk space 
but also the network bandwidth. Therefore, how 
to reduce transmission consumption under the 
premise of ensuring the stability of model training 
is a topic worthy of study.

Public Scene: In this article, the alliance block-
chain system takes care of the authentication 
tasks, but it also raises the threshold for joining 
the training community. How to establish a public 
community using a Proof-of-Work style consensus 
while resisting attacks from the malicious nodes is 
also an interesting topic.

Lightweight Training: For many IoT devices, 
the hardware conditions are usually not enough 
to train a deep neural network. Hence, how to 
reduce the complexity of model training (e.g., 
seeking help from edge servers), in the meantime 
ensuring privacy protection, is a worthy research 
topic.

eXPerImentAl
settIngs And normAl trAInIng

To demonstrate the effectiveness of the BFLC, 
we perform it on the real-world federated data-
set FEMNIST [13]. This dataset contains 805263 
samples and 3550 users for handwritten char-
acter image classification tasks and contains 
62 different classes. Following the instruction 
of the dataset, we simulate 900 devices in the 
training community, where the local datasets 
are unbalanced in number and non-IID. We 
employ a blockchain system named FISCO 
(https://github.com/fisco-bcos) with PBFT con-
sensus on an Intel Core CPU i9-9900X with a 
clock rate of 3.50 GHz with 10 cores and two 
threads per core. The SC layer was constructed 
by the C++ pre-compiled contracts. The learn-
ing model is written with Python 3.7.6 and Ten-
sorflow 1.14 and is executed on Geforce RTX 
2080Ti GPUs. We should mention that the 900 
devices in the simulation are divided according 
to the original collection, in order to restore 
the realistic data distribution. The FISCO frame-
work we use is an open-source blockchain sys-
tem project, with convenient pre-compiled SC 
functions, which can quickly deploy machine 
learning algorithms.

We compare BFLC with the basic FL [12] 
framework and the stand-alone training frame-
work as the baseline. Each framework per-
forms the classic image classification model 
AlexNet [14] as the global model and fixed 
the hyper-parameters to ensure fairness. In 
terms of the experimental settings, we define 
the proportion of active nodes in each round 
as k percent, among which 40 percent will be 
elected as committee members in the next 
round for BFLC. The proportion of training 
nodes for Basic FL is also k  percent. Mean-
while, stand-alone training will leverage the 
whole dataset. Under the conditions of differ-

ent k values, we record their performance in 
Table 1.

In Table 1, with the proportion of active 
nodes increase, the performance of BFLC keeps 
approaching the eff ect of the basic FL framework 
and only has a slight loss compared to the stand-
alone training with the intact dataset. BFLC can 
signifi cantly reduce the consumption of consen-
sus through the committee consensus mechanism 
rather than broadcasting. Compared with stand-
alone training, BFLC also has the privacy protec-
tion of FL and requires no trusted central server 
to manage, which signifi cantly reduces the risk of 
privacy leakage.

under mAlIcIous AttAck
The malicious nodes in the training community 
will generate harmful updates, which will sig-
nificantly reduce the performance of the global 
model if being integrated. In this sub-section, we 
simulate malicious node attacks to demonstrate 
how the proposed BFLC, basic FL, and CwMed 
[15] will be aff ected under diff erent malicious pro-
portions among active nodes. We assume that 
the attack mode of the malicious node is random 
perturbation with a pointwise Gaussian random 
noise.

The basic FL will not perform any defense 
measures, and model updates generated by ran-
domly selected active nodes will be integrated. 
CwMed constructs a global gradient, where each 
entry is the median of entries in the local gradi-
ents with the same coordinate. BFLC relies on 
the committee consensus mentioned above to 
resist the attack. Each update will obtain a median 
score from the committee.

In order to enhance the effectiveness of the 
attack, we assume that malicious nodes are col-
lusion, that is, members of the malicious com-
mittee will give random high scores (e.g., 90 
percent) to the malicious updates. The propor-
tion of active nodes is fi xed as 10 percent, and 

TABLE 1. Accuracy of BFLC, Basic FL and stand-alone on FEMINST dataset with 
diff erent proportion of active nodes.

Frameworks
Proportion k % of active nodes

10 % 20 % 30 % 40 % 50 %

BFLC 89.33 % 89.89 % 90.02 % 89.87 % 89.78 %

Basic FL 90.02 % 90.20 % 90.29 % 90.11 % 90.42 %

Stand-alone 91.34 %

FIGURE 4. Performance of methods under malicious 
attacks.
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20 percent of them will be elected as the next 
committee. As shown in Fig. 4, the BFLC can 
resist a much higher malicious nodes proportion 
than the compared methods. This indicates the 
eff ectiveness of BFLC with the help of the com-
mittee mechanism.

trAnsmIssIon cost
Based on the experiment of malicious attacks, we 
calculate the cost of network transmission. Each 
network interaction, including the transmission of 
models and updates, transmits the full model size 
data (denoted as one transmission unit). In the 
original FL settings, only network traffi  c between 
servers and clients will occur. In decentralized set-
tings, network transport occurs between clients 
(broadcasting by default).

After fixing the proportion of malicious 
nodes to 10 percent, we can obtain the relation-
ship between the network cost and the model 
performance. In Fig. 5, we plot the logarithmic 
number of transmission units along the x-ax-
is and the accuracy score along the y-axis. In 
summary, the decentralized FL settings increase 
the cost of network transmission with no doubt. 
However, the experimental results demonstrate 
the stability of BFLC by obtaining higher perfor-
mance under malicious attacks. Furthermore, 
BFLC can also reduce part of the network cost 
compared with other decentralized methods, 
and fasten the convergence. Indeed, the decen-
tralized federal learning method can avoid the 
risks from the central server, but the optimiza-
tion of network transmission under the premise 
of ensuring training accuracy is a topic worthy 
of future research.

conclusIon
As aforementioned, the security of federated 
learning is facing challenges in many aspects, such 
as the model poisoning from malicious nodes and 
privacy leaking from a malicious server. Based 
on a trusted blockchain system, we propose 
BFLC, which is a decentralized, federated learn-
ing framework with the committee consensus. 
The consensus can eff ectively avoid the infl uence 
of malicious central servers or malicious nodes. 
In the experiment section, we verified the effec-
tiveness and security of the BFLC framework by 
adopting a real-world dataset. We also discussed 
the scalability of BFLC, which has broad research 
prospects in security, data storage, and incentive 
mechanisms.
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