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Abstract— As a fundamental problem in social network
analysis, community detection has recently attracted wide atten-
tion, accompanied by the output of numerous community detec-
tion methods. However, most existing methods are developed by
only exploiting link topology, without taking node homophily
(i.e., node similarity) into consideration. Thus, much useful
information that can be utilized to improve the quality of
detected communities is ignored. To overcome this limitation,
we propose a new community detection approach based on
nonnegative matrix factorization (NMF), namely, homophily
preserving NMF (HPNMF), which models not only link topology
but also node homophily of networks. As such, HPNMF is
able to better reflect the inherent properties of community
structure. In order to capture node homophily from scratch,
we provide three similarity measurements that naturally reveal
the association relationships between nodes. We further present
an efficient learning algorithm with convergence guarantee to
solve the proposed model. Finally, extensive experiments are
conducted, and the results demonstrate that HPNMF has strong
ability to outperform the state-of-the-art baseline methods.

Index Terms— Community detection, graph clustering, node
homophily, nonnegative matrix factorization (NMF).

I. INTRODUCTION

MANY real-world systems can be characterized by the
networked data structure, such as social networks,

collaboration networks, and information networks [1]. One
salient property of these networks is the presence of groups
of nodes with dense connections inside the same group and
sparse connections across different groups. Such groups are
typically defined as communities [2], [3]. Exploring these
communities is of significant importance to understanding the
structural and functional properties of networks. In addition,
finding community structure has boosted many interesting
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applications, e.g., friend recommendation on social networks,
team formation on collaboration networks, and viral marketing
on information networks [4]. The task of finding communities
from networks is formally referred to as community detection.

In recent years, community detection has attracted much
attention, and extensive approaches have been proposed [3].
These approaches can be roughly categorized into two classes:
1) the methods [5]–[8] that can automatically find optimal
community structures based on certain criteria, e.g., modular-
ity [9], minimum cut [10], normalized cut [11], to name but
a few and 2) the methods [12]–[15] that require a parameter
to artificially specify the number of communities to detect.
Although these established approaches have already achieved
good performance in some cases, it is still a big challenge to
find intrinsic community structures. For instance, approaches
based on classic modularity criterion may suffer from the
resolution limit problem [16], i.e., they cannot identify the
miniature communities of networks.

Link topology, an important network description, represents
a considerable amount of latent node annotation, and thus
offers a promising starting point for community detection.
On this account, most existing approaches struggle to dis-
cover communities-based solely on the link topology of net-
works [3]. However, it is not sufficient to identify intrinsic
community structures by just exploiting the link topology
information. For example, on social networks, users belonging
to the same community may not link with each other directly.
On the other hand, on coauthorship networks, researchers
belonging to different research fields may have once collab-
orated with each other. In addition, the link topology infor-
mation may be noisy due to errors in the network collection
process. These missing or unexpected links show that the
link topology information is not complete for high-quality
community detection. Therefore, to determine the community
structures of networks precisely, more (latent) information
should be taken into consideration.

To compensate the incompletion of the link topology
information, some existing approaches [17], [18] propose to
take node attributes into consideration. However, it is dif-
ficult to obtain node attributes in some cases. Some other
approaches [19], [20] take the must-link and cannot-link
information as a priori knowledge to guide the detection
of community structures. Apparently, the priori knowledge
is also difficult to obtain. In most cases, we only have the
pure link topology information. Thus, to identify high-quality
communities, we should take full advantage of the network
structure information (e.g., extracting more latent information
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to enhance the link topology), which is undoubtedly a chal-
lenging problem.

Node homophily, another important network description,
reveals the interactions between nodes, and thus should also
be a valuable source of information that can be used to
explain the existence of community structures in networks.
According to [21], node homophily means the homogeneity
(i.e., similarity) between nodes and it is a basic organiza-
tion principle of networks. For example, on social networks,
node homophily is the principle that communications between
similar users occur at a higher rate than among dissimilar
users. On coauthorship networks, node homophily gives rise
to the fact that authors having lots of common articles tend
to root in the same or similar research field(s). From the
point of view of spreading dynamics, the direct result of node
homophily is the localization of similar nodes [21], which
naturally corresponds to community structures. Nevertheless,
node homophily is seldom considered in the existing com-
munity detection approaches. For unannotated networks, node
homophily can be extracted via deeply exploring the network
structure and it is a good enhancement of the link topology
information.1 By learning node homophily, the effects of
missing or unexpected links can be reduced. In short, node
homophily implies the similarity between nodes, and it has
significant impacts on the formation of community structures.

Therefore, the integration of the link topology information
and the node homophily information provides a great potential
for high-quality community detection. However, there are two
challenges to overcome. First, it is challenging to precisely
extract the node homophily information that can capture latent
properties of communities. Second, it is technically challeng-
ing to integrate link topology and node homophily effectively.
This is because when identifying communities via modeling
link topology, the target is to maximize the link density within
communities, while via modeling node homophily, the target
is to maximize the node similarities within communities. Thus,
we need to fuse the two targets into one and then optimize the
two perspectives at the same time (i.e., to detect communities
with both high link density and high node similarities).

Motivated by the above-mentioned analyses, we propose
a novel node homophily preserving nonnegative matrix fac-
torization (HPNMF) approach to explicitly model the effects
of both link topology and node homophily under the pop-
ular nonnegative matrix factorization (NMF) [22] frame-
work. NMF has also been employed for community detection
in [12], [13], [23], and [24], where only the link topology
information is exploited. By optimizing the HPNMF model,
we obtain one community membership matrix U . Each row
of U represents the strength of node–community relationships.
For modeling link topology, our HPNMF model is based on
the basic assumption that nodes sharing similar community
memberships should be more likely to attach to each other.
This requires that the link topology information could be
recovered from U . For modeling node homophily, we provide

1Although link topology and node homophily are both extracted from
network structure, they are in essence distinct. The object of link topology is
the link, while the object of node homophily is the node. In fact, link topology
and node homophily can be regarded as two views of the network structure.

Fig. 1. Graphical models of the existing approaches and our HPNMF
model. Network: G . Communities: U . Node attributes: X . Node homophily: S.
External information: O . As can be seen, the existing approaches detect
communities based on link topology and external information. On the other
hand, our model first extracts node homophily from network structure and
then integrates the link topology and node homophily information to identify
communities. (a) Graphical model of existing approaches. (b) Graphical model
of HPNMF.

three similarity measurements that can naturally reveal node
homophily from scratch. The intuition for modeling node
homophily is that similar nodes are more likely to have the
same community memberships. This requires that the rows
of U corresponding to similar nodes should be as close as
possible to each other. To make our HPNMF model more
effective, we further introduce a sparsity constraint on U ,
aiming to select the most relevant community for each node.
The key difference between the existing approaches and our
HPNMF model is illustrated in Fig. 1.

In summary, the main contributions of this article include
the following.

1) A novel community detection model, namely, HPNMF,
is proposed to model the link topology and node
homophily of networks simultaneously. As such,
HPNMF can better characterize the properties of com-
munity structures.

2) An efficient learning algorithm with convergence guar-
antee is proposed to optimize the HPNMF model.

3) Extensive experiments are conducted to demonstrate that
HPNMF can identify communities with better quality
and higher accuracy than the state-of-the-art baseline
methods.

The rest of this article is organized as follows. In Section II,
we give a brief review of related work. Next, we formulate the
community detection problem in Section III. The proposed
HPNMF model is then detailed in Section IV, followed
by the description of the learning algorithm in Section V.
In Section VI, extensive experimental results to demonstrate
the efficiency and effectiveness of our HPNMF model are
reported, and this article is finally concluded in Section VII.

II. RELATED WORK

Due to the ubiquity of community structures in real-world
networks [2], the task of identifying communities from net-
works has obtained enormous attention from different research
fields ranging from computer science to mathematics and
physics in the past several decades [3]. This issue is for-
mally referred to as community detection, which has been
widely recognized as a fundamental problem in network analy-
sis. Community detection has also boosted many practical
applications such as friend recommendation and advertising.
As a result, lots of community detection approaches have been
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proposed, such as [1], [6], [8], [13], [23], [25], [26], and so on.
For detailed review of community detection methods, refer
to [3].

Although so many community detection approaches have
been proposed, there is no universally accepted single defini-
tion of community structures in networks. Hence, variant cri-
teria are adopted in the literature [27]. Among them, minimum
cut [10] and modularity [9] are two of the most widely adopted
criteria for community detection. The minimum-cut criterion-
based approaches seek to partition a network into disjoint
subgraphs such that the number of cuts across these subgraphs
is minimized. The modularity criterion-based approaches aim
to partition a network into disjoint groups by ensuring that
the number of edges within a group is significantly more than
the expected number of edges. However, the minimum-cut
criterion-based approaches suffer from a high computation cost
and tend to find communities regardless of whether they are
implicit in the network structures or not [28]. The modularity
criterion-based approaches usually suffer from the resolution
limit problem, i.e., they cannot detect communities smaller
than a scale, which depends on the total size of networks [16].

In recent years, NMF has become a new criterion for
community detection, and a variety of NMF-based community
detection approaches have been proposed [12]–[14], [19],
[23], [29]–[31]. As a variant of the standard matrix factoriza-
tion (MF) by introducing nonnegative constraints on the factor
matrices, NMF turns into an imperative tool for clustering
analysis [32]–[34]. NMF has powerful interpretability derived
from the nonnegative constraints and it is naturally fit for com-
munity detection. In general, NMF-based community detection
approaches factorize the node adjacent matrix of a network
into nonnegative low-rank factor matrices, and then the node–
community relationships are extracted from the factor matri-
ces. For instance, Wang et al. [13] propose a symmetric NMF
model to extract communities, which factorizes the adjacent
matrix into two identical low-rank matrices. Jin et al. [14]
propose a nonnegative matrix tri-factorization approach for
community detection, where a third factor matrix is introduced
to capture the relationships between communities. In [23],
a nonnegative symmetric encoder–decoder (NSED) approach
under the NMF framework is proposed for community detec-
tion. In [29], an embedding-based approach is devised to do
community detection and network embedding simultaneously,
which is a modularized NMF model. In addition, a Bayesian
NMF model is proposed in [31] for adaptive community
detection. Two evolutionary NMF frameworks are proposed
in [35] for dynamic community detection.

Although the above-mentioned community detection
approaches have achieved good performance in some cases,
they usually detect communities by just exploiting the link
topology information of networks. Thus, their performance
may degrade dramatically when the link topology information
is incomplete. To address this issue, some approaches propose
to involve external information or priori knowledge to
enhance the link topology so as to discover better community
structures [17]–[20]. However, it is difficult to obtain the
compensatory information. In most cases, we only have
the pure network structure information. Therefore, to detect

high-quality communities, we should use the network structure
information perfectly, that is, extracting more information
from network structure instead of just link topology. In view
of this, our HPNMF model first extracts both link topology
and node homophily information from networks and then
fuses them to capture the properties of community structures
more precisely. Since HPNMF considers link topology
and node homophily simultaneously, it is fundamentally
different from the existing approaches. Moreover, HPNMF
is time-efficient and will not suffer from the resolution limit
problem.

III. PROBLEM STATEMENT

We consider an undirected and unweighted network G =
(V , E) with n = |V | nodes and m = |E | edges (i.e., links),
where V and E denote the node set and edge set respectively.
Network G is typically represented by a node adjacent matrix
A = (ai j ) ∈ R

n×n , where ai j = 1 if nodes i and j
are connected, and ai j = 0 otherwise. Since network G is
undirected, A is a symmetric matrix. Suppose that network
G consists of k communities, and let C denote the set of
communities in G, i.e., C = {Ci |Ci �= ∅, 1 ≤ i ≤ k}, where
Ci corresponds to the i th community. In this article, we focus
on nonoverlapping community detection, thus the requirement
Ci ∩ C j = ∅ if i �= j should be satisfied.

As aforementioned, NMF is an emerging criterion for
community detection, which has great interpretability and high
efficacy. In light of this, we choose NMF as the criterion in
this article. The problem of community detection under the
NMF framework can be formally formulated as follows.

Problem Statement 1 (Community Detection via NMF):
Given an undirected and unweighted network G = (V , E)
with its node adjacent matrix denoted by A, the NMF-based
approaches aim at partitioning G into a set of disjoint
communities C by optimizing the following objective
function:

min
U≥0

O(A, U) (1)

where U = (ui j ) ∈ R
n×k is termed as the community

membership matrix, and each entry ui j represents the strength
of node i belonging to community C j .

The main goal of this article is to seek for a proper objective
function O that can manifest the community structures of
networks more precisely than existing methods.

IV. NODE HOMOPHILY PRESERVING NMF

Under the NMF framework, we develop our novel HPNMF
model, which takes link topology and node homophily infor-
mation into consideration simultaneously. In this section,
we first present how to model link topology and node
homophily respectively, and then combine them into a unified
model.

A. Modeling Link Topology
In a network, the link topology represents a considerable

amount of latent node annotation, and thus offers a promising
starting point for community analysis of the network. Since the
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community structure requires that nodes should be densely
connected within a community and sparsely connected across
communities, a basic assumption to model the link topology is
that two nodes should be more likely to attach to each other if
they share the same community structure. Next, we state that
NMF is a natural way to match this basic assumption.

As aforementioned, given a network G = (V , E),
the propensities of nodes i and j belonging to community
Cp are denoted as uip and u j p. Consequently, the expected
number of edges between nodes i and j in community Cp is
uipu j p [24]. Summing over all communities, we obtain that
the expected number of edges between nodes i and j in G is∑k

p=1 uipu j p. From this process of generating edges, we can
see that if nodes share the same community structure (i.e., they
have similar community memberships), they will have more
possibilities to be linked, which naturally matches our basic
assumption. Obviously, the expected number of edges between
nodes i and j should be as closely consistent as possible with
ai j . Hence, we can formulate the following objective function:

min
U≥0

LE =
n∑

i, j=1

⎛
⎝ai j −

k∑
p=1

uipu j p

⎞
⎠

2

. (2)

It is easy to transform (2) into a matrix formulation

min
U≥0

LE = ‖A −UU T ‖2F (3)

where ‖ · ‖F represents the Frobenius norm.
Since we are focused on disjoint community detection,

a straightforward way to determine the node–community mem-
bership for node i is to choose the community Cp whose cor-
responding uip has the largest value as the node–community
assignment. In order to enforce this strategy, we add an l1
norm sparsity on each row of U to produce U with many
very small values and a few large values, which gives rise to
the following objective function together with (3):

min
U≥0

LE = ‖A −UU T ‖2F + γ

n∑
i=1

‖Ui.‖21 (4)

where Ui. denotes the i th row of U , ‖Ui.‖1 represents the
sparsity regularization on Ui., and γ is a positive parameter
used to make a tradeoff between the first error term and
the second sparsity term. Except for the sparsity constraint,
the second term can also prevent the values of some rows of
U too large, which guarantees that the community membership
of each node can be captured by U .

B. Modeling Node Homophily
In a network, the node homophily refers to the tendency

of characteristics of different nodes to be correlated, i.e., the
similarity of nodes. Since the relationships between nodes
with similar characteristics tend to be stronger than the
relationships between nodes having different characteristics,
the node homophily ought to provide a good explanation to
the existence of community structures in networks.

However, as stated in Section I, most existing approaches
infer network communities based on link topology directly.
Without considering node homophily, these approaches neglect

much useful information that can be used to improve the
quality of detected communities. For example, some links
may be invalid due to mistakes in the data collection process.
Obviously, trying to model these noisy links while ignoring the
node homophily may result in low-quality communities. But
on the other hand, by utilizing the node homophily, the impacts
of these noisy links can be reduced. Therefore, it is essential
to take node homophily into consideration.

In light of the above discussion, the key point of modeling
node homophily is to calculate the similarity between each
pair of nodes. The more similar two nodes are, the more
similar their community memberships are. Recall that we are
focused on undirected and unweighted networks in this work.
Thus, it is challenging to calculate the similarity between
nodes precisely, for the node homophily can be affected by
many internal and external factors, such as the locations of
nodes, the neighbors of nodes, and the actual objects of nodes.
To tackle this challenge, we introduce three assumptions for
modeling node homophily from scratch as follows.

1) Assumption 1: Connected nodes should have much more
similar community memberships than unconnected ones.

2) Assumption 2: Connected nodes with a large number
of common neighbors should have much more similar
community memberships than connected nodes having
few common neighbors.

3) Assumption 3: Unconnected nodes with a large number
of common neighbors should also have similar commu-
nity memberships.

Assumption 1 embodies the smoothness or consistency
requirement that the label of each node tends to be the same
as that of its neighbors [36], [37]. But it only focuses on
whether two nodes are connected or not, which makes it unable
to handle the impacts of noisy links and incomplete links.
Assumptions 2 and 3 can overcome this limitation due to
their consideration of the similarity between nodes’ neighbor-
hood network structures. More specifically, Assumption 2 is
applicable to networks with noisy links, and Assumption 3 is
useful when networks are incomplete. These three assumptions
capture the first-order and second-order node homophily well,
yet higher order node homophily is left out, which we leave
as future work.

It is not straightforward to take full advantage of the
three assumptions above. Next, we provide three approaches
to calculating the similarity between each pair of nodes,
which naturally match the three assumptions. We denote the
similarity between nodes i and j as si j . The node similarity
matrix of all the nodes is then S = (si j ) ∈ R

n×n .
1) Naive Similarity: This is the simplest similarity mea-

surement, which is defined as follows:

s(N)
i j =

{
1, if (i, j) ∈ E

0, otherwise.
(5)

2) Jaccard Similarity: This is based on the well-known
Jaccard index, a common index for binary variables.
Let �(i) be the set containing node i and its adjacent
neighbors, that is,

�(i) = { j ∈ V |(i, j) ∈ E} ∪ {i}. (6)
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Then, the Jaccard similarity between nodes i and j is
defined as

s(J )
i j =

|�(i) ∩ �( j)|
|�(i) ∪ �( j)| (7)

where | · | denotes the cardinality of a set.
3) Hybrid Similarity: The hybrid similarity is defined as

s(H)
i j =

{
s(J )

i j exp
(
s(J )

i j − s̄(J )
)
, if s(N)

i j > 0

s(J )
i j , otherwise

(8)

where s̄(J ) denotes the average value of the Jaccard sim-
ilarity between all pairs of nodes. Clearly, this definition
will enhance the similarity between those pairs of linked
nodes whose Jaccard similarity is above s̄(J ) and depress
the similarity between those pairs of linked nodes whose
Jaccard similarity is below s̄(J ).

As can be seen, the naive similarity measurement only
matches Assumption 1. The Jaccard similarity measurement
matches both Assumptions 2 and 3, but it makes no distinction
between them due to the lack of emphasis on the importance
of link relationships between nodes. With the aids of the
enhancing and depressing strategies, the hybrid similarity
measurement is a natural match to all the three assumptions,
which means that the hybrid similarity measurement is more
robust to missing and noisy links. In the remainder of this
article, we remove the superscripts of si j for brevity.

Let Ui. and U.i denote the i th row and i th column of U ,
respectively. Based on the node similarity matrix S, we can
then formulate the following objective function:

min
U≥0

LV = 1

2

n∑
i, j=1

si j ‖Ui. −U j.‖22

= 1

2

n∑
i, j=1

si j

k∑
p=1

(uip − u j p)
2 =

k∑
p=1

U T
.p LU.p

=
k∑

p=1

(U T LU)pp = tr(U T LU) (9)

where tr(·) represents the matrix trace, and L is the graph
Laplacian matrix defined by L = D − S. Here, D =
(di j ) ∈ R

n×n is a diagonal matrix with dii = ∑n
j=1 si j .

We incorporate the factor 1
2 into (9) because each pair of nodes

is calculated twice.
By minimizing LV, we expect that if two nodes are similar,

then their community memberships are also similar to each
other. However, the objective function in (9) may suffer from
the trivial solution problem as pointed out in [38], that is, all
columns of U tend to be identical up to a scale. To address
this issue, more constraints should be imposed on U . Similar
to [38], we add an orthogonal constraint on U , which leads to
the following new objective function:

minLV = tr(U T LU), s.t. U ≥ 0, U T U = I. (10)

C. Unified Model
Now, we can combine the objective function of modeling

link topology in (4) and that of modeling node homophily
in (10) into a unified model, which leads to the overall
objective function of our HPNMF model

min
U≥0,U T U=I

L = LE + λLV

= ‖A − UU T ‖2F + λtr(U T LU)+ γ ‖U1k‖22
(11)

where λ is a positive parameter used to adjust the contribution
of the node homophily information, 1k denotes an all-one
column vector with k elements, and ‖ · ‖2 represents the l2
norm. The objective function L in (11) is nonconvex over U ,
as shown in Theorem 1.

Theorem 1: The objective function L in (11) is not convex
over U .

The detailed proof is provided in Appendix A.

V. OPTIMIZATION

The orthogonal constraint on U makes (11) NP-hard to
optimize. Instead of optimizing (11) directly, we choose to
optimize the following objective function:

min
U≥0

L = ‖A − UU T ‖2F + λtr(U T LU)

+ γ ‖U1k‖22 + α‖U T U − I‖2F (12)

where α controls the degree of the orthogonal constraint.

A. Learning Algorithm
First, we rewrite the objective function L in (12) as

L = tr(AAT )+ (α + 1)tr(UU T UU T )+ λtr(U T LU)

+ γ tr(U MU T )− 2tr(A′UU T ) (13)

where M = 1k1T
k is a k × k matrix filled with ones, and

A′ = A + α I .
To solve (13), we need to introduce a Lagrange multiplier

matrix � = (θi j ) ∈ R
n×k for the nonnegative constraints on U ,

which leads to an equivalent objective function L�

L� = L− tr(�U T )

= tr(AAT )+ (α + 1)tr(UU T UU T )+ λtr(U T LU)

+ γ tr(U MU T )− 2tr(A′UU T )− tr(�U T ). (14)

The partial derivative of L� with respect to U is

∂L�

∂U
= 4(α + 1)UU T U − 4A′U + 2λLU + 2γ U M −�.

(15)

Setting (15) to 0, we obtain

� = 4(α + 1)UU T U − 4A′U + 2λLU + 2γ U M. (16)

Following the Karush–Kuhn–Tucker (KKT) conditions [39]
that θi j ui j = 0, we have

(2(α + 1)UU T U − 2A′U + λLU + γ U M)i j ui j = 0. (17)
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Algorithm 1 Algorithm for the Proposed HPNMF Model
Input: Node adjacent matrix A, node similarity matrix S, and

parameters: k, λ, γ , and α;
Output: The community membership matrix U ;
1: Randomly initialize U ≥ 0;
2: while not converge do
3: Update U according to (18);
4: end while
5: return U ;

This is the fixed-point equation that the solution should
satisfy at convergence. By solving this equation, we derive
the following iterative updating rule:

ui j ← ui j

(
1− β + β

(2A′U + λSU)i j

(
+ λDU + γ U M)i j

)
(18)

where 
 = 2(α + 1)UU T U , and 0 < β ≤ 1 is a parameter
which is suggested to be 0.5 by following the strategy in [40].
Clearly, this updating rule guarantees U remains nonnegative
in each iteration. Note that in the derivation of (18), we have
used the fact that L = D − S.

Based on the updating rule in (18), the proposed opti-
mization procedure for problem (12) is then summarized in
Algorithm 1.

B. Correctness Analysis
The correctness of the updating rule in (18) is illustrated in

the following theorem.
Theorem 2: If the iterative updating rule in (18) con-

verges, then the final solution U satisfies the KKT optimality
condition.

See Appendix B for a detailed proof.

C. Convergence Analysis
The proof of convergence follows a similar procedure as

described in [22] by leveraging the auxiliary function.
Definition 1: A function H (u, u′) is referred to as an aux-

iliary function of function F(u), if the conditions

H (u, u′) ≥ F(u) and H (u, u) = F(u) (19)

are simultaneously satisfied [22].
Lemma 1: If H is an auxiliary function of F , then F is

nonincreasing under the updating rule

u(t+1) = arg min
u

H (u, u(t)). (20)

Proof of this lemma can be found in [22]. For each element
u in U , let F(u) denote the part of the objective function L
in (12), which is only related to u. A specific form of the
auxiliary function H (u, u′) for F(u) is provided in Lemma 2.

Lemma 2: The function

H (u, u′) = F(u′)+ F ′(u′)(u − u′)

+ (2(α + 1)UU T U + λDU + γ U M)i j

βu′
(u − u′)2

(21)

Fig. 2. Empirical convergence analysis of the updating rule in (18) on
PoliticsUK by varying β from 0.2 to 0.8. As can be seen, for all the cases,
the objective function value converges very fast (almost within ten iterations).

is an auxiliary function for function F(u). Here, i and j are
the indices of u′ in U and F ′(u′) is the first-order derivative
of F with respect to u′.

Proof of this lemma is given in Appendix C. Based on
Lemmas 1 and 2, we can now demonstrate the convergence
of the iterative updating rule in (18).

Theorem 3: The objective function L in (12) is nonincreas-
ing under the iterative updating rule in (18).

Proof of this theorem is presented in Appendix D. Here,
we illustrate an empirical convergence analysis of the updating
rule on the PoliticsUK data set (see Section VI for details) as
shown in Fig. 2.

D. Complexity Analysis
The time complexity of Algorithm 1 is analyzed in the

following theorem.
Theorem 4: Let t be the number of iterations of Algo-

rithm 1 to achieve convergence. Then, the overall time com-
plexity of Algorithm 1 is of order O(t (n2k + nk2)).

Proof: The main time cost of Algorithm 1 lies in the
update of U . In the while loop, the update of U takes
O(n2k+ nk2) time in each iteration. Therefore, the total time
complexity of Algorithm 1 is of order O(t (n2k + nk2)). �

VI. EXPERIMENTS

In this section, we conduct extensive experiments to validate
the performance of our proposed HPNMF model by comparing
it with several representative community detection approaches
on nine real-world networks. All methods are implemented
in Python 3.5 and all experiments are conducted on a server
with two 2.4-GHz Intel Xeon CPUs and 128-GB main memory
running Ubuntu 14.04.5 (64-bit).

A. Data Sets
For evaluation, we adopt nine real-world networks with

different types as benchmarks, where six of them have ground-
truth communities and the other three have no ground-truth
communities. The detailed statistics of these networks are
summarized in Table I.

These networks are downloaded from four different web-
sites: Network Repository2 (Dolphins, NetScience, and WikiV-
ote) [41], Insight Resources3 (PoliticsIE, PoliticsUK, and

2http://networkrepository.com/
3http://mlg.ucd.ie/index.html
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TABLE I

NETWORK STATISTICS. n: NUMBER OF NODES, m : NUMBER OF
EDGES, AND k : NUMBER OF GROUND-TRUTH COMMUNITIES

Olympics) [42], SNAP4 (EmailEU) [43], and LINQS5 (Cora
and Pubmed).

B. Baseline Methods
We select two classes of community detection methods for

comparison, including: 1) the methods that automatically find
optimal community structures based on certain criteria and
2) the methods with a parameter to specify the number of
desired communities.

For networks without ground-truth communities, we com-
pare HPNMF with five methods, which fall into the first class.

LE: LE represents the leading eigenvector method, a popular
community detection algorithm proposed by Newman [5].
LE is a divisive algorithm, and each split is done by maxi-
mizing the modularity regarding the original network.

LPA: LPA finds the community structures of a network
according to the label propagation algorithm [6].

Infomap: Infomap is an information theoretical method [7].
Infomap envisions the community detection problem as a
coding problem and aims to find optimal partitions based on
the minimum description length principle.

WalkTrap: WalkTrap is a random walk-based community
detection algorithm [8]. The basic idea of WalkTrap is that
short random walks tend to stay in the same community.

MaxPerm: MaxPerm is a novel community detection
approach [44], which aims at optimizing the permanence of
networks by considering the distribution of intercluster con-
nections from a community to its neighboring communities.

For networks having ground-truth communities, we compare
HPNMF with ten methods, which fall into the second class.

KM: KM is short for the canonical k-means clustering
method [45]. For KM, each row of the node adjacent matrix A
is treated as a feature vector [the same to principal component
analysis (PCA) in the following].

PCA: PCA is short for principal component analysis [46],
one famous linear dimensionality reduction method.

TSVD: TSVD performs linear dimensionality reduction by
means of truncated singular value decomposition [47].

NNCut: NNCut is a well-known algorithm for graph clus-
tering by optimizing the normalized cut criterion [11]. NNCut
belongs to the family of spectral clustering.

NMF: NMF is employed for community detection in [12].

4https://snap.stanford.edu/index.html
5https://linqs.soe.ucsc.edu/data

SNMF: SNMF is adopted for community detection in [13].
NSED: NSED is a nonnegative symmetric encoder–decoder

approach proposed for community detection in [23].
GNMTF: GNMTF factorizes the node adjacent matrix into

three low-rank factor matrices, where one factor matrix is used
to capture the relationships between communities [14].

CPNE: CPNE is an embedding-based approach, which
learns community structures and network representations at
the same time [29].

IFS: IFS is a fast and scalable algorithm by simulating
information flow on networks [26]. It is closely related to
LPA; however, it needs a parameter to specify the starting
nodes. Here, we select the k nodes with the largest degree as
seed nodes.

C. Evaluation Metrics
We adopt five metrics to measure the quality of detected

communities. For networks without ground-truth communities,
we choose modularity Q and permanence P as the evalua-
tion metrics. For networks having ground-truth communities,
we employ adjusted Rand index (ARI), normalized mutual
information (NMI), and F-score as the evaluation metrics. For
all these metrics, larger values indicate better performance.
Refer to [48] for the details of modularity, permanence, ARI,
and NMI. The F-score is defined as

F-score =
∑
Ci∈C

|Ci |∑
C j∈C |C j | max

C∗j∈C∗
F

(
Ci , C∗j

)
(22)

where F(Ci , C∗j ) represents the F-score between Ci and C∗j .
The value of F-score lies in the range of [0, 1].

D. Community Detection Results
In the experiments, we choose the naive similarity measure-

ment as the principle to construct the node similarity matrix S
for its simplicity.

We first evaluate the performance of our HPNMF model
on the three networks without ground-truth communities
(i.e., Dolphins, NetScience, and WikiVote). As previously
discussed, we employ modularity Q and permanence P as
the evaluation metrics, and we select LE, LPA, Infomap,
WalkTrap, and MaxPerm for comparison. For the five baseline
methods, there is no need to specify the number of desired
communities, because they can automatically find the optimal
partitions based on certain criteria. However, a parameter k
in our HPNMF model is used to specify the number of
communities to detect. For a fair comparison, we vary k from
2 to 30 with step size 1, and the best result is selected as
the optima of our HPNMF model. The results are reported
in Figs. 3 and 4. As illustrated in Fig. 3, HPNMF outperforms
all the five baseline methods in term of modularity. From
Fig. 3, we can also see that the performance of LE, LPA,
and MaxPerm is consistently much worse than HPNMF, while
Infomap and WalkTrap tend to achieve comparable results with
HPNMF. However, both Infomap and WalkTrap are unstable.
For example, WalkTrap performs well on NetScience and
WikiVote, but it is inferior to LE on Dolphins. As illustrated
in Fig. 4, HPNMF outperforms all the five baseline methods
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Fig. 3. Modularity on the networks without ground-truth communities.
(a) Dolphins. (b) NetScience. (c) WikiVote.

Fig. 4. Permanence on the networks without ground-truth communities.
(a) Dolphins. (b) NetScience. (c) WikiVote.

in term of permanence as well. It is worthy of mentioning
that MaxPerm is consistently inferior to HPNMF, although
its target is to maximize the permanence when detecting
communities. This is because MaxPerm is an agglomeration
algorithm that needs to assign nodes to different communities
heuristically, thus it is quite hard to obtain the optimal solution.
These results demonstrate that when k is properly selected,
HPNMF is guaranteed to detect high-quality communities.

We then evaluate the performance of HPNMF on the
six networks having ground-truth communities. We compare
HPNMF with KM, PCA, TSVD, NNCut, NMF, SNMF,
NSED, GNMTF, CPNE, and IFS in terms of ARI, NMI, and
F-score. The results are reported in Table II. This experiment
aims at evaluating the accuracy of detected communities by
comparing them with the ground-truth communities. Thus,
the number of communities to detect for all baseline methods
and our HPNMF model is set to be the ground-truth, as listed
in Table I. Recall that HPNMF has two parameters λ and γ in
its objective function. Parameter λ is used to adjust the relative
importance of link topology and node homophily. Parameter
γ is used to control the degree of sparsity regularization.
In the experiment, we tune both λ and γ in the range of
{10−3, 10−2, 10−1, 100, 101, 102, 103}. For a fair comparison,
we run each method 20 times and the average results are
reported.

As can be seen, HPNMF outperforms all baseline methods
significantly on the six networks across different evaluation
metrics, except for performing inferior to SNMF on EmailEU
in term of NMI. Taking PoliticsUK as an example, we can see
that HPNMF achieves over 10% performance promotion over
all the three evaluation metrics (the performance promotion
over ARI even reaches 30%). Table II also tells us that it
is not reasonable to apply KM, PCA, and TSVD to the node
adjacent matrix A by treating each row of A as a feature vector
in view of their poor performance. This is because handling
A in such a manner ignores much useful information, such
as the interaction between nodes. From Table II, we can also
see that NMF-based baseline methods tend to perform better
than the other baseline methods, which shows that NMF is a

powerful tool to model the link topology information. Since
HPNMF outperforms all the NMF-based baseline methods,
it is verified that taking node homophily into account instead
of considering link topology solely is essential to improve the
quality of detected communities.

The above two experiments show that our HPNMF model
exploiting the link topology and node homophily information
together yields better performance than all the baseline meth-
ods using only a single source of information, which justifies
our motivation of taking link topology and node homophily
into consideration simultaneously for community detection.

E. Similarity Measurement Comparison
As discussed in Section IV-B, we have proposed three

similarity measurements (i.e., naive similarity, Jaccard simi-
larity, and hybrid similarity) for modeling node homophily.
In this experiment, we investigate the effects of the three
similarity measurements. The experiment is conducted by
fixing parameters λ and γ at 100 and 10−2 respectively. The
results are illustrated in Fig. 5. It is observed that the Jaccard
similarity measurement and hybrid similarity measurement
consistently result in better performance than the naive similar-
ity measurement. Moreover, the hybrid similarity measurement
leads to the best performance. For instance, the ARI value cor-
responding to the hybrid similarity measurement on PoliticsIE
is 0.898, which is far larger than that of the naive similarity
measurement, i.e., 0.828. These results verify our statements
in Section IV-B. From this experiment, we can conclude that it
is necessary to differentiate different similarity measurements
if we want to detect high-quality communities. It is also
necessary to develop more advanced similarity measurements
to reveal node homophily more accurately.

F. Parameter Sensitivity
Since there are two parameters λ and γ in the objective

function of our HPNMF model, we further study how HPNMF
performs when using different settings of the parameters.
As stated before, we tune both λ and γ in the range of
{10−3, 10−2, 10−1, 100, 101, 102, 103}. We report the results
on PoliticsUK. Similar results can be observed on other
networks. We omit them to save space.

We first evaluate the effects of λ by fixing γ at 0. The
results are reported in Fig. 6(a). From Fig. 6(a), we can see
that when λ ≤ 1, the performance across the three evaluation
metrics tends to become gradually better as λ increases, while
when λ > 1, the performance tends to decreases gradually
as λ increases. These results tell us that HPNMF is to some
extent sensitive to parameter λ, and λ = 1 is a good choice
to obtain satisfactory performance. Recall that λ controls the
contribution of node homophily. The results imply that link
topology and node homophily tend to be equally important
for community detection. Therefore, it is essential to take node
homophily into consideration.

We then evaluate the effects of γ by fixing λ at 1. The results
are reported in Fig. 6(b). From Fig. 6(b), we can see that
when γ takes small values, the performance of HPNMF is very
stable. However, when γ > 10, the performance decreases
rapidly. This is because large γ will cause the underfitting
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TABLE II

PERFORMANCE COMPARISON ON THE NETWORKS WITH GROUND-TRUTH COMMUNITIES (BOLD NUMBERS REPRESENT BEST RESULTS)

Fig. 5. Comparison of the three similarity measurements in terms of ARI, NMI, and F-score. (a) PoliticsIE. (b) PoliticsUK. (c) Olympics. (d) EmailEU.
(e) Cora. (f) Pubmed.

Fig. 6. Parameter sensitivity analysis on PoliticsUK. (a) Effects of λ. (b)
Effects of γ .

problem. In other words, large γ will make all the elements
of the community membership matrix U very small, thus it
is impractical to determine community assignments based on
such U . These results tell us that the sparsity coefficient γ
cannot be too large.

G. Convergence Study and Runtime Comparison
As aforementioned, the updating rule in (18) for minimizing

the objective function L of our HPNMF model is essentially
iterative. We have shown that L is nonincreasing under this
updating rule in Theorem 3. In Fig. 2, we have also empirically
analyzed the convergence of the updating rule on PoliticsUK
by varying β from 0.2 to 0.8 with step size 0.2. In this section,
we further investigate the convergence and efficiency of the
updating rule on PoliticsUK when β = 0.5, which is the
value we fix β at in all the experiments before. The results
are depicted in Fig. 7(a). From Fig. 7(a), we can see that

Fig. 7. Convergence analysis and runtime comparison. (a) Convergence
analysis. (b) Runtime comparison.

the updating rule is able to achieve a very rapid convergence
within only a few iterations (almost less than 10).

We further report the runtime of all methods on the largest
network Pubmed in Fig. 7(b). In this experiment, the iteration
number is set to 200 for all NMF related methods. It can
be observed from Fig. 7(b) that our HPNMF model is quite
efficient. It runs much faster than most baseline methods
and takes less than 100s to finish 200 iterations on Pubmed.
As shown in the convergence study, HPNMF can achieve con-
vergence within almost 10 iterations, which further guarantees
the efficiency of our model, as it is reasonable to set the
number of iterations to be 10 in practice.

H. Community Visualization
In this section, we aim to intuitively show the effectiveness

of our HPNMF model. To this end, we visualize the commu-
nities discovered by HPNMF on PoliticsUK. For comparison,
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Fig. 8. Community visualization on PoliticsUK. (a) Ground-truth commu-
nities. (b) Communities detected by SNMF. (c) Communities detected by our
HPNMF model. The figure is best viewed in color.

Fig. 9. Scalability testing on LFR benchmark networks via varying n.

we also visualize the ground-truth communities and the com-
munities detected by SNMF. PoliticsUK consists of five com-
munities, and the number of nodes in each community is 173,
43, 5, 11, and 187, respectively. For visualization, we set the
element in each row of the community membership matrix U
who has the largest value to 1, and all the other elements of
U are set to 0. In addition, nodes with the same ground-truth
community assignments are grouped together. The community
visualization results are shown in Fig. 8, where the deep red
color indicates the node–community relationships. As illus-
trated in Fig. 8, the communities discovered by our HPNMF
model are very close to the ground-truth communities, even
some nodes that belong to the third and fourth tiny commu-
nities are correctly clustered. While the communities detected
by SNMF are very inaccurate, comparing to the ground-truth
communities. Although SNMF detects the first community
precisely, it fails to identify the fifth community, which is the
largest one among the five ground-truth communities.

I. Scalability Testing
In this section, we further evaluate the scalability of our

HPNMF model on synthetic networks. We generate ten LFR
benchmark networks [49] with the number of nodes varying
from one hundred thousand to one million. When generating
these networks, we set the average degree to 5, the maximum
degree to 30, and the other parameters of LFR are set by
default. Thus, the generated networks are sparse networks. The
iteration number of HPNMF is fixed at 100, and the results
are illustrated in Fig. 9. As can be seen, even on the largest
network (with one million nodes), HPNMF can finish running
in about 20 min. The results demonstrate that HPNMF is quite
efficient and can be applied to large-scale networks.

VII. CONCLUSION

In this article, we cope with the community detection
problem. Under the NMF framework, we propose our new
community detection approach HPNMF which models the link

topology and node homophily of networks simultaneously.
To capture node homophily from scratch, we provide three
similarity measurements that can naturally reveal the asso-
ciation relationships between nodes. We formulate HPNMF
as an optimization problem and develop an efficient learning
algorithm to solve it. Extensive experiments on both real-
world and synthetic networks are conducted to demonstrate
the superiority of our HPNMF model.

Since we are focused on undirected and unweighted net-
works in this work, it would be interesting to investigate how
to preserve node hompophily in directed and weighted net-
works. Moreover, the similarity measurements we provide can
only capture the first-order and second-order node homophily,
it would also be interesting to study how to embody the higher
order node homophily.

APPENDIX A
PROOF OF THEOREM 1

Proof: To determine whether the objective function L
in (11) is convex or not, the main challenge lies in the first part,
i.e., ‖A − UU T ‖2F . Obviously, ‖A − UU T ‖2F can be treated
as a multivariate polynomial of degree four, whose convexity
is NP-hard to decide [50]. Therefore, it is impractical to prove
its convexity. However, we can show intuitively that ‖A −
UU T ‖2F is highly impossible to be convex. Suppose that Ũ
is an optimal solution of ‖A − UU T ‖2F , then we can obtain
another optimal solution Û by swapping any two columns
of Ũ . This is because we have ŨŨ T = ÛÛ T and Ũ T Ũ =
Û T Û = I . If ‖A−UU T ‖2F is convex over U , then according
to the definition of convex function, it is straightforward that

ζ Ũ + (1− ζ )Û ∀ζ ∈ (0, 1) (23)

is also an optimal solution of ‖A−UU T ‖2F . This phenomenon
indicates that there are infinitely many optimal solutions. This
is to say, there are infinitely many underlying community
structures of a given network, which obviously contradicts
the truth. Based on these discussion, we can conclude that
‖A−UU T ‖2F is highly impossible to be convex. Note that we
also have tr(Ũ LŨ) = tr(Û LÛ) and ‖Ũ1k‖2 = ‖Û1k‖2, thus
following similar discussion above, we can conclude that the
objective function L in (11) is highly impossible to be convex
over U . �

APPENDIX B
PROOF OF THEOREM 2

Proof: If the updating rule in (18) converges, then we
have U (∞) = U (t+1) = U (t) = U , where t represents the tth
iteration. That is, for each ui j in U , we have

ui j = ui j

(
1− β + β

(2A′U + λSU)i j

(
+ λDU + γ U M)i j

)
. (24)

Then, we have

ui j = 0, or (
− 2A′U + λLU + γ U M)i j = 0 (25)

which results in

(
− 2A′U + λLU + γ U M)i j ui j = 0 (26)

which is identical with (17). �

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 07,2022 at 07:24:14 UTC from IEEE Xplore.  Restrictions apply. 



YE et al.: HOMOPHILY PRESERVING COMMUNITY DETECTION 2913

APPENDIX C
PROOF OF LEMMA 2

Proof: We prove Lemma 2 by checking whether it satisfies
the two constraints defined in Definition 1. It is obvious
that H (u, u) = F(u), thus we only need to verify that
H (u, u′) ≥ F(u). To this end, we first rewrite F(u) with the
Taylor series expansion

F(u) = F(u′)+ F ′(u′)(u − u′)+ 1

2
F ′′(u′)(u − u′)2 (27)

where F ′(u′) and F ′′(u′) are the first-order and second-order
derivatives of F with respect to u′, respectively. Denote the
indices of u′ in U as i and j (i.e., u′ is the element on the
i th row and j th column of U ), then we have

F ′(u′)=(4(α+1)UU T U−4A′U+2λLU+2γ U M)i j (28)

and

F ′′(u′) = (−4A′ + 2λL + 4(α + 1)UU T )ii

+ (2γ M + 4(α + 1)U T U) j j + 4(α + 1)u′2. (29)

Comparing (27) with (21), we find that to verify H (u, u′) ≥
F(u) is in essence equivalent to verify that

(2(α + 1)UU T U + λDU + γ U M)i j

βu′
≥ (−2A′ + λL + 2(α + 1)UU T )ii

+ (γ M + 2(α + 1)U T U) j j + 2(α + 1)u′2. (30)

It is easy to show that

(UU T U)i j ≥ u′(UU T )ii + u′(U T U) j j − u′3 (31)

and

(UU T U)i j ≥ u′3. (32)

Thus, we have

(UU T U)i j ≥ 1

3
(u′(UU T )ii + u′(U T U) j j + u′3). (33)

In addition, we have

(DU)i j =
n∑

l=1

dil ul j ≥ dii u
′ ≥ (D − S)ii u

′ = Lii u
′ (34)

and

(U M)i j =
k∑

l=1

uil Ml j ≥ u′M j j = u′. (35)

Following (33)–(35), we can conclude that when
0 < β ≤ (1/3), (30) holds and H (u, u′) ≥ F(u).

It is hard to show rigorously that (30) still holds when
(1/3) < β ≤ 1. But in fact, (30) should hold when (1/3) <
β ≤ 1. This is because in the shrinkage processes of (31)
and (32), we cast away many positive terms that can guarantee
(30) holds. The empirical convergence analysis in Fig. 2 has
also confirmed this inference. Therefore, we conclude that
H (u, u′) ≥ F(u) holds. �

APPENDIX D
PROOF OF THEOREM 3

Proof: The auxiliary function H (u, u′) in (21) is convex
over u. Setting the derivative of H (u, u′) with respect to u to 0,
we obtain

F ′(u′)+2
(2(α+1)UU T U+λDU+γ U M))i j

βu′
(u∗−u′)=0.

(36)

Furthermore, we have

u∗ = u′
(

1− β F ′(u′)
(4(α + 1)UU T U + 2λDU + 2γ U M)i j

)

= u′
(

1− β + β
(2A′U + λSU)i j

(2(α + 1)UU T U + λDU + γ U M)i j

)
(37)

which gives rise to the updating rule in (18). By setting
u(t+1) = u∗ and u(t) = u′, we have the following conclusion:

F(u(t+1)) ≤ H (u(t+1), u(t)) ≤ H (u(t), u(t)) = F(u(t)).

Finally, following Lemma 1, we conclude that the function
F(u) is nonincreasing under the updating rule in (18). Since
our updating rule is essentially elementwise, it is straight-
forward to imply that under this updating rule, the objective
function L in (12) will be nonincreasing. �
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