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Abstract—Community detection is of significant importance in
understanding the structures and functions of networks. Recently,
overlapping community detection has drawn much attention due
to the ubiquity of overlapping community structures in real-
world networks. Nonnegative matrix factorization (NMF), as
an emerging standard framework, has been widely employed
for overlapping community detection, which obtains nodes’ soft
community memberships by factorizing the adjacency matrix
into low-rank factor matrices. However, in order to determine
the ultimate community memberships, we have to post-process
the real-valued factor matrix by manually specifying a threshold
on it, which is undoubtedly a difficult task. Even worse, a unified
threshold may not be suitable for all nodes. To circumvent the
cumbersome post-processing step, we propose a novel discrete
overlapping community detection approach, i.e., Discrete Non-
negative Matrix Factorization (DNMF), which seeks for a discrete
(binary) community membership matrix directly. Thus DNMF is
able to assign explicit community memberships to nodes without
post-processing. Moreover, DNMF incorporates a pseudo super-
vision module into it to exploit the discriminative information in
an unsupervised manner, which further enhances its robustness.
We thoroughly evaluate DNMF using both synthetic and real-
world networks. Experiments show that DNMF has the ability
to outperform state-of-the-art baseline approaches.

Index Terms—community detection, overlapping communities,
discrete nonnegative matrix factorization, pseudo supervision

I. INTRODUCTION

The research of network science has achieved rapid de-

velopment in recent years. In fact, many real-world complex

systems can be naturally characterized by the data structure of

networks, such as social networks, information networks and

biological neural networks [1]. One salient property of these

networks is the existence of community structures. Intuitively,

a community (also referred to as a module or a cluster) rep-

resents a group of cohesive nodes that have more connections

inside the group than outside [1]. Admittedly, analyzing the

underlying community structures is of significant importance

in revealing the patterns and functions of networks. Besides,

community detection has boosted plentiful applications, e.g.,

friend recommendation, team formation, semantic expansion

and viral marketing [2].

Community detection has long been an important research

topic in social network mining, web mining and social media

analytics. Up to now, community detection has drawn enor-

mous amounts of attention from various research fields [3]–

[5], and extensive community detection approaches have been

proposed [5]–[8]. However, the goal of traditional community

detection approaches (e.g., Louvain [9] and Infomap [10]) is to

partition a network into disjoint communities. Thus, each node

is assigned to one and only one community, which is usually

referred to as non-overlapping community detection. These

traditional approaches ignore the fact that nodes participate

naturally in multiple communities in real world. For example,

in social networks, one individual can belong to more than one

group such as colleague group, friend group and family group;

in co-purchased networks, one item may also belong to mul-

tiple categories. Therefore, in order to learn the patterns and

functions of networks adequately, it is necessary to uncover

the overlapping community structures. This emerging issue is

formally referred to as overlapping community detection [11].

Owing to the success of nonnegative matrix factorization

(NMF) in machine learning [12], NMF has recently been

adopted for community detection [13], [14]. Specifically, given

an undirected and unweighted network with its adjacency ma-

trix denoted by A, NMF approximately factorizes A into two

identical low-rank matrices U with nonnegative constraints,

i.e., A ≈ UUT (U ≥ 0). As thus, each column of U
denotes a community and each row of U can be interpreted

as the strength of associations between a node and different

communities. In view of this, U is usually referred to as the

community membership matrix. It is apparent that NMF fits

into overlapping community detection. As a matter of fact,

NMF has been regarded as a standard technique to deal with

the problem of overlapping community detection, and various

NMF-based approaches have been proposed [15]–[18].

In general, NMF-based overlapping community detection

approaches consist of two stages: 1) factorizing the adjacency

matrix A to obtain the community membership matrix U
via optimizing certain objective function, and 2) determining

the ultimate community assignments for each node via post-

processing U. The typical post-processing strategy is manually

specifying a threshold on U, then each entry of U that is larger

than the threshold indicates a node-community assignment.

Since U is a real-valued matrix, it is a nontrivial task to choose

a proper threshold. An improper threshold may result in totally

wrong community assignments. Moreover, a unified threshold

may not be suitable for all nodes, and a personalized threshold

for each node seems to be a better choice, which casts more

difficulties on the post-processing. Take the network shown
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Fig. 1: (a) A toy network with three communities. Only node v joins
in multiple communities. (b) The soft community memberships of
nodes u and v. There is not a common threshold for nodes u and v.

in Fig. 1 as an example. Obviously, it is impossible to find

a common threshold for nodes u and v on the given U.

For instance, if the threshold is set to be less than 0.3, then

node u will be wrongly assigned to communities C2 and C3

simultaneously, although the community assignments of node

v are correct. If the threshold is set to be larger than 0.3, then

node v will not be assigned to communities C1 and C2 any

more. Evidently, to obtain accurate community assignments,

we need personalized thresholds for nodes u and v respectively

(e.g., 0.8 for node u and 0.2 for node v). However, due to the

lack of an oracle showing in advance how many communities

each node belongs to, it is unrealistic to manually specify

proper personalized thresholds for all nodes.

Targeting at skirting the cumbersome post-processing step,

we propose a novel discrete overlapping community detection

approach under the NMF framework. The proposed approach

is named Discrete Nonnegative Matrix Factorization (DNMF),
which explicitly learns the discrete community memberships

for each node. Therefore, there is no need to do the post-

processing. More specifically, DNMF integrates the two stages

of conventional NMF-based approaches into one, and it learns

a binary community membership matrix F directly. Instead of

restricting U to be binary, DNMF involves a smooth rotation

matrix [19], [20] to transform the continuous U to the discrete

F. Thus, the continuous U just serves as an intermediate

product. For ease of differentiation, we call U soft commu-

nity membership matrix and F hard community membership

matrix thereafter. To make DNMF more robust, we further

incorporate a discriminative pseudo supervision module into

it to learn a kernel regression [21] based prediction function

by treating F as the ground-truth community labels and A
as nodes’ feature matrix. The rationality of introducing this

module lies in that if F successfully captures the community

memberships of nodes, then F should be predictable. It

has been shown that such a pseudo supervision module is

able to exploit the discriminative information in unsupervised

scenarios [22]. Thus, DNMF is expected to have the capability

of learning the intrinsic community memberships of nodes.

Moreover, in DNMF, the community memberships and the

pseudo supervision module are learnt in a unified manner with

mutual guidance rather than separately, which further enhances

the robustness of the learnt F.

Overall, the main contributions of this paper include:

• To bypass the cumbersome post-processing step of con-

ventional NMF-based overlapping community detection

approaches, we propose DNMF to learn the discrete

community memberships of nodes directly. To make

DNMF more robust, we further incorporate a pseudo

supervision module into it to exploit the discriminative

information in an unsupervised manner.

• To address the discrete optimization of DNMF in a

computationally tractable way, we devise an efficient

learning algorithm which first decomposes the overall

objective function into several independent subproblems

by following the coordinate descent scheme [23], and

then optimizes these subproblems alternately.

• To evaluate the performance of DNMF, we conduct ex-

tensive experiments on both synthetic and real-world net-

works. The results demonstrate the superiority of DNMF

over state-of-the-art baseline approaches.

II. RELATED WORK

During the past two decades, lots of efforts have been

devoted to the research of community detection [5]. However,

there is no universal definition for the community detection

task. To design effective community detection models, a myr-

iad of quantitative measurements have been proposed to assess

the quality of community structures, e.g., modularity [24]

and conductance [3]. Another way to model the community

structures is to define explicit community models like k-core

[25] and clique [26]. There are also some works resorting to

clustering methods to identify communities [27]–[29].

However, most of the traditional research only focuses on

non-overlapping community detection, which contradicts the

fact that one node can naturally join in multiple communities.

More recently, overlapping community detection has drawn

much attention due to its relaxation to multiple community

memberships [11]. For overlapping community detection, the

classic approaches include clique percolation [30], link parti-

tioning [31], label propagation [32], [33] and local expansion

[34], [35]. The clique percolation method (CPM) is the first

approach for overlapping community detection, and it is based

on the assumption that each community is a union of adjacent

k-cliques. Link partitioning reinvents communities as groups

of links (edges) instead of nodes. Label propagation estimates

the belonging coefficients of each node by averaging the coef-

ficients of all its neighbor nodes. The local expansion methods

are local-first approaches and they unveil communities from

seeded small components.

Another line of research is based on NMF due to its high

interpretability and its natural fitness for overlapping commu-

nity detection. Psorakis et al. [16] first utilize a Bayesian NMF

model to extract communities. Shi et al. [18] further propose

an adaptive Bayesian NMF model for overlapping community

detection. In [36], a bounded matrix tri-factorization method

is proposed, where a third factor matrix is introduced to

represent the interactions among all communities. Yang and

Leskovec [15] develop an NMF-based generative model for

community detection on massive networks, which relaxes the

graph fitting problem into a continuous optimization problem.

Zhang et al. [37] propose a preference-based NMF model to
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TABLE I: Main symbols and parameters.

A The adjacency matrix
U The soft community membership matrix
F The hard community membership matrix
Q The rotation matrix
S The discrimination matrix
K The kernel matrix

K̂ The centered kernel matrix
B The kernel coefficient matrix
b The intercept vector

k The number of communities
α The tradeoff parameter
β The tradeoff parameter
γ The regularization parameter

incorporate implicit link preference information into overlap-

ping community detection. Zhang et al. [17] further propose a

homophily-based NMF approach to model the community-to-

link and link-to-community effects simultaneously. Ye et al.

[38] devise a deep autoencoder-like NMF model to learn the

hierarchical mappings between the adjacency matrix A and the

soft community membership matrix U. He et al. [39] propose

to identify and summarize communities concurrently under

the NMF framework. For all these NMF-based approaches, a

proper threshold should be manually specified on U so as to

determine the ultimate community memberships.

Although there are different kinds of overlapping commu-

nity detection methods as described above, NMF-based meth-

ods have gained more and more popularity in recent years.

However, how to post-process the soft community membership

matrix U to obtain accurate community assignments is an

under-studied problem. Without reasonable post-processing,

we may get poor community detection results even though

U is of high quality. As aforementioned, it is troublesome to

post-process U via manually specifying a threshold. In view

of this, we propose to learn explicit community assignments

directly without post-processing.

III. PRELIMINARIES

Throughout this paper, we use bold uppercase and lowercase

letters to denote matrices and vectors respectively. In partic-

ular, we use Xij as the (i, j)-th entry of matrix X. The i-th
row and j-th column of X are denoted as xi and xj . The

Frobenius norm and trace of X are denoted as ‖X‖F and

tr(X). The Euclidean inner product between matrices X and

Y is denoted as < X,Y >, i.e., < X,Y >= tr(XYT ). For

a given vector x, we denote ‖x‖2 as its �2-norm. Besides, we

denote In as the identity matrix of size n × n and 1n as an

all-one column vector with n elements. The main symbols and

parameters used in this paper are listed in Table I.

Let G = (V, E) be a network with n = |V| nodes and

m = |E| edges, where V and E denote the node set and edge

set respectively. In this paper, we focus on undirected and

unweighted networks, thus we can represent G by its adjacency

matrix A = (Aij) ∈ {0, 1}n×n such that Aij = 1 if there

is an edge between nodes i and j, and Aij = 0 otherwise.

The target of community detection is to extract the underlying

community structures of G. Assume that G is composed of

k communities. Let C denote the set of communities, i.e.,

C = {Ci|Ci �= ∅, Ci �= Cj , 1 ≤ i, j ≤ k}, where Ci

represents the i-th community. The traditional non-overlapping

community detection problem requires that Ci ∩ Cj = ∅
if i �= j. However, in the overlapping community detection

scenario, this constraint is removed.

Suppose that we have a soft community membership matrix

U ∈ R
n×k
+ with each entry Uij representing the propensity

of node i belonging to community Cj . Then, UijUpj can

be treated as the expected number of edges between nodes i
and p deduced by community Cj [40]. Summing over all the

k communities, we obtain that the total expected number of

edges between nodes i and p in network G is
∑k

j=1 UijUpj .

The expected number of edges implies that if two nodes

share more similar community memberships, they have more

possibilities to be linked. This generative process reflects

the observation that nodes within communities are densely

connected. Apparently, the expected number of edges between

all pairs of nodes should be as closely consistent as possible

with the adjacency matrix A, i.e., A ≈ UUT . There are

various ways to measure the difference between A and UUT .

The most straightforward and widely-used method is in the

form of ‖A−UUT ‖2F [13].

IV. DISCRETE OVERLAPPING COMMUNITY DETECTION

To bypass the cumbersome post-processing step of con-

ventional NMF-based overlapping community detection ap-

proaches, here we aim at seeking for a model that can learn the

hard community membership matrix F directly. To achieve this

goal, we propose the DNMF model for discrete overlapping

community detection without post-processing.

A. Model Formulation

To explicitly learn the hard community membership matrix

F, we propose to introduce a rotation matrix Q to smoothly

transform the continuous U to the discrete F. We expect that

F precisely captures the community structures and F is as

closely consistent as possible with U. To this end, we derive

the following objective function:

min
U,F,Q

‖A−UUT ‖2F + α‖U− FQ‖2F ,
s.t. U ≥ 0 ∧QTQ = Ik ∧ F ∈ F ,

(1)

where F = {F|F ∈ {0, 1}n×k ∧ F1k ≥ 1n} denotes the

solution space of F, Q ∈ R
k×k represents the rotation matrix

and α is a trade-off parameter. The orthogonality constraint

on Q is crucial, as it enforces FFT to be close to UUT

(When minimizing (1), we have U ≈ FQ, then we can obtain

FFT = FQQTFT = (FQ)(FQ)T ≈ UUT ). In this regard,

F preserves the information of A (FFT ≈ UUT ≈ A),

that is, F has the ability to capture the community structure

information. Note that we do not directly replace U by F to

learn nodes’ hard community memberships for the reason that

it will be highly intractable to solve the biquadratic discrete

optimization problem [41]. However, with the aid of Q, the

learning of the model in (1) is much easier.
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B. Discriminative Pseudo Supervision

It is noted that the model in (1) is in fact a generative model,

as it seeks to reconstruct A from U. Suppose that we are

provided with the community label information, then we can

learn a discriminative model directly in the supervised learning

manner, e.g., by treating the columns of A as nodes’ feature

vectors, we can learn a regression-like model to predict the

community labels of nodes readily. There is no doubt that the

combination of generative and discriminative models can lead

to better performance [42]. In view of this, we intend to extend

the model in (1) to incorporate a discriminative supervision

module into it. Considering that it is impractical to obtain the

genuine overlapping community labels in most instances, we

choose F as the pseudo ground-truth alternatively. As thus,

the generative module and the discriminative module can be

learnt in a mutual guidance manner, which empowers us to

exploit discriminative information in an unsupervised manner.

To be more specific, given the network G = (V, E) with its

adjacency matrix denoted by A = (a1,a2, · · · ,an), we treat

F as the pseudo ground-truth community labels. Then, we can

derive the following objective function to learn a robust kernel

regression based prediction function:

L(W,b;F,A) = ‖F−φT (A)W−1nb
T ‖2F +γ‖W‖2F , (2)

where φ(·) represents the kernel function and γ is a regular-

ization parameter used to avoid overfitting.

Let W = φ(A)B, where B ∈ R
n×k is defined as the kernel

coefficient matrix, the above function is then equivalent to:

L(B,b;F,K) =‖F− φT (A)φ(A)B− 1nb
T ‖2F

+ γtr(BTφT (A)φ(A)B)

=‖F−KB− 1nb
T ‖2F + γtr(BTKB),

(3)

where K = φT (A)φ(A) denotes the kernel matrix and its

elements are given by Kij = φT (ai)φ(aj). Up to now, lots of

kernel functions have been proposed in the field of machine

learning. In this paper, we choose the Gaussian kernel function

[43] due to its high representation ability, thus the kernel

matrix is computed as Kij = exp(−‖ai − aj‖22/2σ2), where

σ denotes the kernel width. Here we set σ = 1 for simplicity.

Let H = In− 1
n1n1

T
n be a centering matrix, and let φ̂(A) =

φ(A)H, then the centered kernel matrix is computed as:

K̂ = φ̂T (A)φ̂(A) = HTφT (A)φ(A)H = HTKH. (4)

By replacing the kernel matrix K with the centered kernel

matrix K̂ in (3), we arrive at:

L(B,b;F, K̂) = ‖F− K̂B− 1nb
T ‖2F + γtr(BT K̂B). (5)

When F and K̂ are given, the minimization of (5) can be

solved by setting the derivatives of L(B,b;F, K̂) with respect

to B and b to 0. Then, we obtain:

B = (K̂+ γIn)
−1F, b =

1

n
FT1n. (6)

By substituting (6) into (5), we have:

L(B,b;F, K̂) = tr(FTSF), (7)

where S = H− (K̂+ γIn)
−1K̂. For convenience, we call S

the discrimination matrix.

C. The Unified Model

Our DNMF model chooses to learn the hard community

membership matrix F and the discriminative pseudo super-

vision module in a unified manner rather than separately. To

this end, we combine (1) and (7) together and obtain the final

objective function as follows:

min
U,F,Q

‖A−UUT ‖2F + α‖U− FQ‖2F + βL(B,b;F, K̂)

= ‖A−UUT ‖2F + α‖U− FQ‖2F + βtr(FTSF),

s.t. U ≥ 0 ∧QTQ = Ik ∧ F ∈ F ,
(8)

where β is a trade-off parameter.

V. OPTIMIZATION

The objective function in (8) is not convex over the three

variables U, F and Q simultaneously. To solve it, we propose

an efficient learning algorithm by following the coordinate

descent scheme [23]. First, (8) is decomposed into three

subproblems with respect to U, F and Q respectively. Then,

(8) is efficiently optimized by solving the three subproblems

alternately.

A. Alternating Optimization

1) The U-subproblem: When F and Q are fixed, we need

to solve the following U-subproblem:

min
U≥0

‖A−UUT ‖2F + α‖U− FQ‖2F , (9)

which can be further rewritten as follows:

min
U≥0

tr(UUTUUT )− 2tr(AUUT ) + αtr(UUT )

− 2αtr(FQ+UT ) + 2αtr(FQ−UT ),
(10)

where the terms irrelevant to U are omitted and matrices

Q+ and Q− denote the positive and negative parts of Q
respectively. That is,

Q+ =
|Q|+Q

2
, Q− =

|Q| −Q

2
,

where |Q| represents the absolute value of Q.

Although the objective function in (10) does not have

a closed-form solution, it can be optimized by iteratively

updating U according to Theorem 1.

Theorem 1. While fixing F and Q, updating U according to
(11) will monotonically decrease the objective function in (10)

until convergence. At convergence, the solution is a KKT fixed
point.

U← U�
(

2AU+ αFQ+

2UUTU+ αU+ αFQ−

) 1
4

. (11)

The proof of Theorem 1 can be found in the appendix. Note

that in (11), �,
[·]
[·] and ([·]) 1

4 are all element-wise operators.

On the basis of Theorem 1, the optimization process of the

U-subproblem is summarized in Algorithm 1.
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Algorithm 1 Algorithm for solving the U-subproblem.

Input: The adjacency matrix A, the initial matrix U0, the

fixed matrices F, Q, and parameter α;

Output: The soft community membership matrix U;

1: Initialize U = U0;

2: while not converged do
3: Update U according to (11);

4: end while
5: return U;

Algorithm 2 Algorithm for solving the F-subproblem.

Input: The discrimination matrix S, the initial matrix F0, the

fixed matrices U, Q, and parameters α, β;

Output: The hard community membership matrix F;

1: Initialize F = F0;

2: repeat
3: for i = 1 to n do
4: Update fi according to (15);

5: end for
6: until there is no change to F
7: return F;

2) The F-subproblem: When U and Q are fixed, we need

to solve the following F-subproblem:

min
F

α‖U− FQ‖2F + βtr(FTSF), s.t. F ∈ F , (12)

which is equivalent to the following objective function:

min
F

tr(FTS′F)− 2αtr(UQTFT ), s.t. F ∈ F , (13)

where S′ = βS + αIn. Due to the discrete constraints, the

above minimization problem is generally NP-hard. We choose

to update the hard community membership matrix F by using

the discrete coordinate descent (DCD) method [44].

Let fi denote the i-th row of F and F′ the matrix of

F excluding fi. Further, let s′i denote the i-th row of S′

while the element S′ii is excluded, and let qi denote the i-
th row of UQT . DCD will update the i-th row fi while

fixing all the other rows of F. Then, we have tr(FTS′F) =
const+S′iifif

T
i +2s′iF

′fTi and tr(UQTFT ) = const+qif
T
i .

Putting the two equations together, we derive the following

optimization problem with respect to fi:

min
fi

S′iifif
T
i + 2(s′iF

′ − αqi)f
T
i , s.t. fi ∈ {0, 1}k ∧ fi1k ≥ 1.

(14)

Let e = S′ii1
T
k +2(s′iF

′−αqi) with its j-th entry denoted by

ej . Then, the above problem has the optimal solution as:

(fi)j =

{
1, if ej = min(e) ∨ ej < 0,

0, if ej �= min(e) ∧ ej ≥ 0.
(15)

The optimization process of the F-subproblem is summarized

in Algorithm 2.

Algorithm 3 Algorithm for DNMF.

Input: The adjacency matrix A, and parameters k, α, β, γ;

Output: U, F and Q;

1: Initialize U, F, Q;

2: while not converged do
3: Solve the U-subproblem by invoking Algorithm 1;

4: Solve the F-subproblem by invoking Algorithm 2;

5: Solve the Q-subproblem according to (17);

6: end while
7: return U, F, Q;

3) The Q-subproblem: When U and F are fixed, we need

to solve the following Q-subproblem:

min
Q

‖U− FQ‖2F , s.t. QTQ = Ik. (16)

The optimal solution of Q is given by Theorem 2.

Theorem 2. With U and F fixed, the closed-form solution of
(16) is given as follows:

Q = Ω2Ω1
T , (17)

where Ω1 and Ω2 are the left and right singular vectors of the
Singular Value Decomposition (SVD) of UTF, i.e., UTF =
Ω1ΣΩ2

T .

Proof. Note that ‖U − FQ‖2F = tr(UUT − 2UTFQ +
FQQTFT ). Considering the fact that QQT = Ik, we can

then obtain: minQ ‖U − FQ‖2F ⇔ maxQ tr(UTFQ) ⇔
maxQ tr(Ω1ΣΩ2

TQ) ⇔ maxQ < Ω1

√
Σ,QTΩ2

√
Σ >.

According to the Cauchy-Schwarz inequality, we have:

< Ω1

√
Σ,QTΩ2

√
Σ > ≤ ‖Ω1

√
Σ‖F ‖QTΩ2

√
Σ‖F .

The equality holds when Ω1

√
Σ = QTΩ2

√
Σ. Therefore, we

obtain the optimal solution Q = Ω2Ω1
T .

By now we have presented the solution for each subproblem.

The whole optimization process is then summarized in Algo-

rithm 3. By optimizing the three subproblems alternately, the

learning algorithm is able to decrease the objective function

in (8) monotonically in each iteration until convergence.

B. Time Complexity
The main time cost of Algorithm 3 lies in the solving of the

three subproblems. Thus, we analyze the time complexity for

each subproblem respectively. For the U-subproblem, it takes

O(tu(n
2k+nk2)) time, where tu denotes the number of iter-

ations to achieve convergence. For the F-subproblem, it takes

O(nk) time for completing the inner loop of updating fi, thus

the overall time complexity of the F-subproblem is O(tfn
2k),

where tf denotes the number of iterations for convergence. For

the Q-subproblem, it takes O(nk2 + k3) time, which can be

simplified as O(nk2) due to k � n. Assume that Algorithm 3

requires tt iterations for convergence, then its overall time

complexity is of order O(tt((tu + tf )n
2k + tunk

2)). As can

be seen, although we have imposed strict discrete constraints

on F, the proposed learning algorithm is efficient to optimize

the objective function.
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VI. EXPERIMENTS

In this section, we conduct extensive experiments on both

synthetic and real-world networks to evaluate the performance

of our DNMF model. The learning algorithm is implemented

by MATLAB 2016b and all experiments are conducted on a

server with two 2.4GHz Intel Xeon CPUs and 128GB main

memory running Ubuntu 14.04.5 (64-bit). The source code is

available at https://github.com/smartyfh/DNMF.

A. Baseline Methods
We select seven state-of-the-art overlapping community de-

tection approaches as baseline methods of our DNMF model.
BigClam: BigClam is a cluster affiliation model [15].

BigClam relaxes the graph fitting problem into a continuous

optimization problem, which makes it suitable for dealing with

large-scale networks.
DEMON: DEMON is a local-first approach for overlapping

community detection [45]. DEMON unveils the community

structures by letting each node vote for the communities it

sees surrounding it in its ego neighborhood.
HNMF: HNMF is a probabilistic approach [17]. HNMF

seeks to model the link-to-community and community-to-link

perspectives simultaneously based on the assumptions that

nodes are more likely to build links if they share communities

and that linked nodes are more similar than non-linked nodes.
EgoSplit: EgoSplit is a highly scalable and flexible frame-

work for detecting overlapping communities [6]. EgoSplit

works in two steps: a local ego-net analysis phase and a global

graph partitioning phase. In the global graph partitioning

phase, the traditional Louvain algorithm [9] is used.
NSED: NSED is a nonnegative symmetric encoder-decoder

approach proposed for community detection [46]. Similar to

autoencoder, NSED involves an encoder component and a

decoder component concurrently.
OCDDP: OCDDP is an overlapping community detection

algorithm based on density peaks [47]. OCDDP utilizes a

similarity-based method to set distances among nodes, a three-

step process to select cores of communities and membership

vectors to represent belongings of nodes.
LFCIS: LFCIS is a latent factor model, which takes both

network topology and node features into consideration [39].

Similar to DNMF, we treat each column of the adjacency

matrix A as nodes’ feature vectors for LFCIS.
Among these baseline methods, DEMON, EgoSplit and

OCDDP are able to determine the number of underlying

communities automatically, while the number of communities

to detect for BigClam, HNMF, NSED and LFCIS should be

pre-determined. Besides, for methods BigClam, HNMF, NSED

and LFCIS, after obtaining the soft community memberships,

a proper threshold should be manually specified to identify

the hard community memberships. We take the same method

as in [15] to determine the threshold. Then the threshold is

calculated as
√
− log(1− 2m

n(n−1) ), where n and m denote

the number of nodes and the number of edges respectively.

For a fair comparison, we run each method 10 times and the

average results are reported.

B. Evaluation Metrics

For networks having ground-truth communities, we choose

the overlapping normalized mutual information (ONMI) [35]

as the evaluation metric. ONMI estimates the similarity be-

tween the ground-truth community memberships C∗ and the

detected ones C. Formally, ONMI is calculated as below:

ONMI = 1− 1

2

⎛
⎝ |C|∑

i

H(Ci|C∗)
|C|H(Ci)

+

|C∗|∑
j

H(C∗j |C)
|C∗|H(C∗j )

⎞
⎠ ,

where H(Ci) denotes the entropy of the i-th community Ci,

and H(Ci|C∗) denotes the entropy of Ci with respect to C∗.
H(Ci|C∗) is given by:

H(Ci|C∗) = min
l∈{1,2,··· ,|C∗|}

H(Ci|C∗l ),

where H(Ci|C∗l ) denotes the conditional entropy of Ci on C∗l .

For networks without ground-truth communities, we choose

the most widely adopted Modularity [24] as the evaluation

metric. The original modularity is defined for evaluating non-

overlapping communities. Following [48], here we slightly

modify the definition to make it suitable for quantifying over-

lapping communities. The modified modularity Q is defined

as follows:

Q =
1

2m

|C|∑
i=1

∑
u∈Ci,v∈Ci

1

OuOv

(
Auv − κuκv

2m

)
,

where m denotes the number of edges, Ou denotes the number

of communities that node u belongs to and κu denotes the

degree of node u.

For both evaluation metrics, higher values indicate more

accurately detected communities, i.e., the detected community

memberships correspond better to the ground-truth ones.

C. Experiments on Synthetic Networks

1) Datasets: We first conduct experiments on synthetic

networks. We employ the well-known LFR toolkit [35] to

generate synthetic networks with ground-truth overlapping

community structures. The parameters of the LFR benchmarks

are listed in Table II. We have generated a total of 20 LFR

benchmark networks by varying the number of nodes n, the

number of overlapping nodes on, the number of memberships

of the overlapping nodes om and the mixing parameter mu
(each node shares a fraction of its edges with nodes in other

communities). All the other parameters are set fixedly as

shown in Table II.

2) Experimental Results: In the experiments, for all base-

line methods, we tune the corresponding parameters by fol-

lowing the guidance of their authors. For our method DNMF,

we tune α in the range of {0.01, 0.05, 0.1, 0.5, 1, 5}, both

β and γ in the range of {10−3, 10−2, 10−1, 100, 101}. For

methods BigClam, HNMF, NSED, LFCIS and DNMF, we set

the number of communities (i.e., k) to be the ground-truth to

test whether the genuine communities can be identified or not.

We first generate 5 networks by varying on from 100 to

500 with a step size of 100 and fixing n at 1000, om at 2 and
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Fig. 2: Performance comparison in terms of ONMI on twenty LFR benchmark networks.

TABLE II: Parameters of LFR benchmark networks.

n Number of nodes To vary
on Number of overlapping nodes To vary
om Number of overlapping memberships To vary
mu Mixing parameter To vary

davg Average degree Fixed at 20
dmax Maximum degree Fixed at 50
t1 Exponent for node degree distribution Fixed at 2
t2 Exponent for community size distribution Fixed at 1
Cmin Minimum community size Fixed at n

50
Cmax Maximum community size Fixed at n

10

mu at 0.3. The results on these networks are shown in Fig. 2

(a). As can be seen, our DNMF model consistently shows

better performance than all baseline methods. We can also see

that EgoSplit shows the worst performance, this is because it

identifies far more communities than the ground-truth.

We then generate 5 networks by varying om from 2 to 6

with a step size of 1 and fixing n at 1000, on at 100 and mu
at 0.3. The results on these networks are shown in Fig. 2 (b),

where similar results as before can be observed. Furthermore,

from both Fig. 2 (a) and Fig. 2 (b), it can be observed that

when on or om grows larger, the performance of all methods

tends to decrease. This is because when more nodes have

overlapping community memberships or overlapping nodes

participate in more communities, the community detection task

will become more challenging.

Next, we generate 5 networks by varying n from 1000 to

5000 and fixing on at n
10 , om at 2 and mu at 0.3. We further

generate 5 networks by varying mu from 0.1 to 0.5 and fixing

n at 1000, on at 100 and om at 2. The results on these

networks are illustrated in Fig. 2 (c) and Fig. 2 (d) respectively.

On these two group of networks, DNMF shows significant

better performance than the other methods. Even on networks

with a large mu which no longer have distinct community

structures, our model still shows satisfactory performance.

These results demonstrate that our model indeed has the

ability to detect discrete overlapping communities without the

cumbersome post-processing.

3) Node Level Analysis: Although previous experiments

have proven the superior performance of our model, they

cannot provide us with an intuitive understanding of the

superiority of DNMF. In this part, we further analyze the

results from node-level perspective. Apparently, the most

useful information associated with each node is the number of

communities it belongs to. Therefore, we look at the number

Big
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Fig. 3: Node-level analysis.

TABLE III: Statistics of real-world networks. n: number of nodes,
m: number of edges, and k: pre-determined number of communities.

Networks n m k

Dolphins 62 159 5
Football 115 613 10
Jazz 198 2742 5
Metabolic 453 2025 20
Netscience 1589 2742 35
Powergrid 4941 6594 45
Pubmed 19717 44338 5

of detected community memberships relative to the ground-

truth one, and we define a new evaluation metric Accuracy,

which is calculated as follows:

ACC =
1

n

∑
u∈V

1{Ou = O∗u},

where O∗u denotes the number of ground-truth communities

that node u belongs to. Clearly, higher ACC values indicate

that there are more nodes sharing the same number of commu-

nity memberships with the ground-truth. We report the results

on the network generated by fixing n at 1000, on at 100, om
at 2 and mu at 0.3 in Fig. 3. It can be seen that DNMF reaches

the highest ACC value. The results intuitively show why our

model can achieve better performance.

D. Experiments on Real-World Networks

1) Datasets: In this part, we conduct experiments on seven

real-world networks. These networks are downloaded from

(http://www-personal.umich.edu/∼mejn/netdata/ and https://

linqs.soe.ucsc.edu/). Their basic information is listed in Ta-

ble III. Since all these networks have no ground-truth over-

lapping communities, we use modularity Q as the evaluation

metric. In addition, we set the number of communities to detect

(i.e., k) for BigClam, HNMF, NSED, LFCIS and DNMF as
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TABLE IV: Performance comparison in terms of modularity Q (mean ± standard deviation).

Networks BigClam DEMON HNMF EgoSplit NSED OCDDP LFCIS DNMF

Dolphins 0.365±0.038 0.319±0.004 0.342±0.031 0.194±0.006 0.374±0.039 0.486±0.011 0.393±0.002 0.524±0.009
Football 0.491±0.039 0.398±0.007 0.484±0.023 0.128±0.002 0.553±0.033 0.483±0.076 0.589±0.002 0.601±0.004
Jazz 0.342±0.029 0.071±0.010 0.342±0.021 0.383±0.075 0.395±0.005 0.261±0.026 0.396±0.002 0.423±0.003
Metabolic 0.194±0.016 0.064±0.002 0.156±0.002 0.336±0.057 0.108±0.009 0.041±0.008 0.087±0.008 0.357±0.008
Netscience 0.589±0.005 0.611±0.007 0.446±0.070 0.769±0.002 0.519±0.037 0.732±0.125 0.343±0.008 0.904±0.010
Powergrid 0.484±0.004 0.083±0.001 0.129±0.008 0.188±0.001 0.445±0.025 0.794±0.108 0.001±0.103 0.789±0.004
Pubmed 0.037±0.006 0.002±0.001 0.345±0.015 0.055±0.001 0.249±0.064 0.501±0.018 0.003±0.001 0.566±0.027
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Fig. 4: Convergence and parameters sensitivity analyses of DNMF.

follows: we run symmetric NMF [13] on each network by

varying k from 5 to 50 with a step size of 5, and then the k that

achieves the highest Q is selected. The detailed information

is shown in Table III.
2) Experimental Results: The results in terms of Q are

presented in Table IV, where the best results are presented

in bold numbers. Table IV shows that DNMF significantly

outperforms the baseline methods on all networks, except for

performing the second best on Powergrid. The results verify

again that DNMF indeed has the ability to capture the discrete

community memberships of nodes accurately.
3) Convergence and Parameters Sensitivity Analyses: Here,

we empirically analyze the convergence and parameters sensi-

tivity of DNMF on Metabolic. Similar results can be observed

on other networks.
The results about convergence are shown in Fig. 4 (a), from

which, we can see that DNMF converges rapidly. The objective

function value becomes stable within only a few iterations. The

results confirm that our learning algorithm (i.e., Algorithm 3)

is quite efficient.
The results with respect to parameter α are shown in

Fig. 4 (b). As can be seen, DNMF is robust to α when α
is small. However, when α is large, the performance degrades

severely. Recall that α plays a significant role in learning the

hard community memberships. The results manifest that our

model is very effective in learning the discrete overlapping

community structures when α does not take too large values.
We further report the joint effects of parameters β and γ in

Fig. 4 (c). Recall that β and γ control the contribution of the

pseudo supervision module. It can be observed that DNMF is

robust to β and γ. As long as β and γ do not take too large

values simultaneously, DNMF is able to achieve satisfactory

performance.
We also show the effects of the number of communities on

the performance of DNMF by varying k from 5 to 50 with

a step size of 5. The results are illustrated in Fig. 4 (d). It

shows that when k takes value the same as the pre-determined

one (i.e., 20), DNMF shows the best performance. The results

demonstrate that although DNMF needs to specify the number

of communities to detect, it has the capability to determine

which k gives the best performance. Thus, we can use binary

search to find the most appropriate k in practice.

4) Ablation Study: Recall that DNMF involves a pseudo su-

pervision module to exploit discriminative information. Here,

we conduct an ablation study to test whether the pseudo

supervision module is able to improve the performance of

DNMF. We denote DNMFp as the pruned version of DNMF

without the pseudo supervision module. We also compare

DNMF with SNMF (short for symmetric NMF [13]), which

is the fundamental component of DNMF (when α = 0
and β = 0). The results are shown in Fig. 5. As can be

seen, both DNMF and DNMFp outperform SNMF on all

networks. DNMF also consistently shows better performance

than DNMFp. The results verify that the pseudo supervision

module can lead to better performance.

E. Running Time Analysis

1) Running Time Comparison: In this subsection, we com-

pare the running time of different methods on a synthetic LFR

network with 5000 nodes. The results are illustrated in Fig. 6.

As can be seen, DNMF shows comparable time overhead with

HNMF. It runs even faster than BigClam. The results confirm

that our learning algorithm is very efficient, in spite of the

discrete constraints.

2) Scalability Testing: We further report the scalability

of DNMF. To this end, we generate nine LFR benchmark

networks by varying the number of nodes from 10000 to

50000 with a step size of 5000. In this experiment, the number

of iterations of the learning algorithm is fixed at 50 for all

networks. The results are shown in Fig. 7. As can be seen,

when n = 10000, DNMF can finish the learning process in

several minutes. With the increasing of n, the time cost grows

near linearly. The results verify the efficiency of our learning

algorithm again. Note that we do not test the scalability of
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DNMF on further larger networks for the reason that their

adjacency matrices cannot be loaded into the main memory

of a single machine. Therefore, it is valuable to implement

DNMF in a distributed way to deal with super-large scale

networks, which we leave as our future work.

VII. CONCLUSION

In this paper, we have proposed a novel overlapping com-

munity detection model DNMF, which can learn the discrete

community memberships of nodes directly, thus there is no

need to do the thorny post-processing. We have further incor-

porated a pseudo supervision module into DNMF to exploit

the discriminative information in an unsupervised manner.

The mutual guidance between the learning of the community

memberships and the learning of the pseudo supervision

module can strengthen the robustness of DNMF. To solve

DNMF effectively, we have introduced an efficient learning

algorithm with detailed convergence analysis. The experiments

on both synthetic and real-world networks have verified the

efficiency and effectiveness of DNMF comprehensively.
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APPENDIX

We first show that the limited solution of the update rule

in (11) satisfies the KKT condition. To this end, we introduce

the Lagrangian function:

L(U) = ‖A−UUT ‖2F + α‖U− FQ‖2F − tr(ΘUT ), (18)

where the Lagrangian multiplier matrix Θ enforces nonneg-

ative constraints, U ≥ 0. The zero gradient condition gives

∂L(U)/∂U = 4(UUT −A)U+2α(U−FQ)−Θ = 0. Ac-

cording to the complementary slackness condition ΘijUij =
0, we obtain:(

2(UUT −A)U+ α(U− FQ+ + FQ−)
)
ij
Uij = 0, (19)

which is a fixed point equation that the solution must satisfy

at convergence.

It is easy to show that the limited solution of the update

rule in (11) satisfies this fixed point equation. At convergence,

we have U(∞) = U(t+1) = U(t) = U, that is,

Uij = Uij

(
2(AU)ij + α(FQ+)ij

2(UUTU)ij + αUij + α(FQ−)ij

) 1
4

, (20)

which is equivalent to:(
2(UUT −A)U+ α(U− FQ+ + FQ−)

)
ij
U4

ij = 0. (21)

It is easy to check that (21) is identical to (19). Both equations

require that at least one of the two factors is equal to zero.

The first factor in both equations is identical. For the second

factor Uij or U4
ij , if Uij = 0 then U4

ij = 0, and vice versa.

Therefore, (21) and (19) are identical.

Next, we prove the convergence of the update rule in (11)

by adopting the auxiliary function approach [12]. We first

introduce the definition of auxiliary function as follows.

Definition. A function Z(u, u′) is an auxiliary function for a
given function J (u) if the conditions Z(u, u′) ≥ J (u) and
Z(u, u) = J (u) are simultaneously satisfied [12].

Lemma 1. If Z is an auxiliary function for J , J is non-
increasing under the update u(t+1) = argminuZ(u, u(t))
[12].

Let J (U) be the sum of all terms in (9) that contain U,

i.e., J (U) denotes (10). Then we can derive Theorem 3.

Theorem 3. The auxiliary function of J (U) is given by:

Z(U,U′) = tr(RTU′U′TU′) +
α

2
tr(MMT )

+
α

2
tr(U′U′T ) +

α

2
tr(FQ−RT ) +

3α

2
tr(FQ−U′T )

− 2tr(U′TAZ)− 2tr(ZTAU′)− 2tr(U′TAU′)

− 2αtr((FQ+)TZ)− 2αtr((FQ+)TU′),

(22)

where Rij =
U4

ij

U′3
ij

, Mij =
U2

ij

U′
ij

and Zij = U′ij ln
Uij

U′
ij

.

Theorem 3 can be proved using a similar idea to that in

[13], [49]. We omit the details due to space limitation. Setting

the derivative of Z(U,U′) with respect to Uij to 0, we have:

∂Z(U,U′)
∂Uij

=
U3

ij

U′3ij
(4U′U′TU′ + 2αU′ + 2αFQ−)ij

−U′ij
Uij

(4AU′ + 2αFQ+)ij = 0.

(23)
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Obviously, the solution of (23) is consistent with (20). Fur-

thermore, according to Lemma 1, we have:

J (U(t+1)) ≤ Z(U(t+1),U(t)) ≤ Z(U(t),U(t)) = J (U(t)).

Therefore, we can conclude that the objective function in (9)

monotonically decreases under the update rule in (11).
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