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A Semisupervised Classification Approach
for Multidomain Networks

With Domain Selection
Chuan Chen , Jingxue Xin, Yong Wang, Luonan Chen, and Michael K. Ng

Abstract— Multidomain network classification has attracted
significant attention in data integration and machine learning,
which can enhance network classification or prediction perfor-
mance by integrating information from different sources. Despite
the previous success, existing multidomain network learning
methods usually assume that different views are available for
the same set of instances, and thus, they seek a consistent
classification result for all domains. However, in many real-world
problems, each domain has its specific instance set, and one
instance in one domain may correspond to multiple instances
in another domain. Moreover, due to the rapid growth of data
sources, different domains may not be relevant to each other,
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which asks for selecting domains relevant to the target/focused
domain. A key challenge under this setting is how to achieve
accurate prediction by integrating different data representations
without losing data information. In this paper, we propose a semi-
supervised classification approach for a multidomain network
based on label propagation, i.e., multidomain classification with
domain selection (MCS), which can deal with the cross-domain
information and different instance sets in domains. In particular,
with sparse weight properties, the proposed MCS can automat-
ically identify those domains relevant to our target domain by
assigning them higher weights than the other irrelevant domains.
This not only significantly improves a classification accuracy
but also helps to obtain optimal network partition for the
target domain. From the theoretical viewpoint, we equivalently
decompose MCS into two simpler subproblems with analytical
solutions, which can be efficiently solved by their computational
procedures. Extensive experimental results on both synthetic and
real-world data sets empirically demonstrate the advantages of
the proposed approach in terms of both prediction performance
and domain selection ability.

Index Terms— Domain selection, multidomain classification,
network integration, semisupervised learning, sparsity.

I. INTRODUCTION

NETWORK-STRUCTURED data are usually represented
as an undirected graph, where each node represents

an instance and each edge represents a relationship between
two instances. For example, in protein interaction networks,
proteins are represented as nodes, and relationships among
proteins, such as physical interactions and expression simi-
larities, are represented as edges. A semisupervised learning
problem on a network is to assign the instance label based
on the information of the labeled instances and unlabeled
instances (nodes) on a network. Graph-based semisupervised
learning methods [5], [6], [16], [17], [28], [30] have been
widely used in many practical applications because of their
flexibility, easiness of implementation, and excellent efficiency
in terms of both computational storage and cost.

In many applications, graph data may be collected from
heterogeneous domains (data sources or layers) [15]. For
example, social reaction networks between any two persons
could be constructed on different platforms, such as Face-
book, Google plus, and Instagram. In the biological analysis,
The Cancer Genome Atlas (TCGA) contains bioinformatics,
genome, transcriptome, and epigenome information for many
cancer diseases. It is clear that we can integrate data from
heterogeneous domains to identify groups of objects in a
reliable manner, for example, a group of patients from a
specific set of diseases or a group of users from a specific set
of social platforms. The motivation is that different domains
contain partial information and the integration of domains
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Fig. 1. Multiple domains: different domains contain different sets of instances, while an instance in a domain can be linked with several instances in the
other domain through the cross-domain relationships.

enables us to combine different pieces of information together
so that the reliability of prediction can be enhanced [35].
For example, the combination of mRNA expression, DNA
methylation, and miRNA expression data substantially out-
performs single type of data analysis. It has been shown
that the accurate identification of cancer subtypes can be
achieved [35] by integrating the multiple data sources. In [32],
it has been demonstrated that the integration of diverse sources
of relevant information from genomic and molecular to cellular
and tissue contexts can significantly improve the accuracy of
protein function prediction. In [34], a method for integrating
multiple graphs for the video annotation problem has been
proposed and studied for multimedia content analysis. The
key assumption of the above-mentioned applications is that
the same set of instances appears in each graph or domain.
Each instance just has its different representations or different
views in different graphs. In these applications, the objective
is to find the most consensus group structure across different
domains [22]. On the other hand, we should mention that in
some works such as [37] and [38], the multigraph classification
may refer to the classification of data with graph-structured
features. Due to the difference, we will not discuss them in
this paper.

In general, different domains can contain different sets
of instances. In addition, an instance in a domain can be
linked with several instances in the other domain, as shown
in Fig. 1. For example, in the TCGA database, there are
several sources or different types of data measured from one
sample or object: DNA sequence, miRNA sequence, protein
expression, mRNA sequence, DNA methylation, copy number,
and so on. A traditional method is to preprocess all data sets
by choosing a common set of samples or instances for data
analysis. Clearly, some useful information may be removed
in this preprocessing stage. The other issue for multidomain
learning is that there may be strong noises or irrelevant
data in the domains. It would be very important and use-
ful for enhancing learning performance by removing noisy
and irrelevant data when we integrate multiple domains
together [1], [20].

In this paper, we propose a novel semisupervised learning
method to tackle the above-mentioned issues, i.e., multidomain

classification with domain selection (MCS). In other words,
we develop a model to manage multiple domains, where
different domains can have different sets of instances, and
one instance in a domain can be linked with several instances
in a different domain. In particular, with respect to the
target/focused domain, MCS can select a suitable weight for
each domain so that noisy and irrelevant data can be removed
in the learning process. Specifically, the proposed method
involves the optimization of two sets of variables: instance
label vector and domain weights with the objective function
consisting of the four terms: the label partition of instances
based on the Laplacian matrix, the transfer of information from
different domains based on domain weights, the given label
information, and the regularization of domain weights. Then,
MCS is theoretically decomposed into two subproblems,
i.e., one domain-weighting subproblem for domain weights
and one instance-prediction subproblem for instance label
vector, which can be analytically solved, respectively. Thus,
the instance label vector can be obtained by solving a linear
subproblem, and the domain weights can be determined by
aggregating the contribution of each domain in the instance
label estimation subproblem, which can be efficiently solved
iteratively. It is interesting to note that some domain weights
are even set to be zero according to their degrees of contribu-
tion in the transfer of domain knowledge.

The remainder of this paper is structured as follows.
In Section II, we provide a brief review of the related works
on single-domain and multidomain learning. In Section III,
we present the proposed model and algorithm for MCS.
In Section IV, experimental results for synthetic and real-world
data sets are given to demonstrate the superior performance
of the proposed method to the other conventional methods.
Finally, some concluding remarks are given in Section V.

II. RELATED WORK FOR SINGLE-/MULTIPLE-DOMAIN

LEARNING METHODS

A. Single Domain

In this section, we briefly review some semisupervised
approaches for single-domain learning. Basu et al. [2] pro-
posed a hidden Markov random fields-based model for semi-
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supervised clustering, which incorporates supervision in the
form of pairwise constraints. In [3], a variation of the standard
K-means clustering algorithm was also used pairwise
constraints for constraining the clustering and learning
distance metrics. This approach can be regarded as a combina-
tion of constraint-based and metric-based methods. Recently,
Yi et al. casted the dynamic semisupervised clustering process
into a search problem over a feasible convex hull generated by
multiple ensemble partitions. Such an approach can update the
clustering results given newly received pairwise constraints.

In general, from an input data set with N instances
{x1, . . . , xl , xl+1, . . . , xN }, we construct an undirected,
connected, and weighted graph G = (V, E, A), where V
and E represent the sets of vertices and edges, respectively,
and A ∈ R

N×N denotes the weighted adjacency matrix.
The first l instances {x1, . . . , xl} are labeled by {y1, . . . , yl},
where yi ∈ {1,−1}. Our goal is to predict the labels of the
remaining unlabeled instances {yl+1, . . . , yN }. The single-
domain semisupervised learning [39] estimates the label
of each instance based on the smoothness or consistency
assumption of labels on the graph, i.e., the label of each
node tends to be the same as that of its neighbors in the
graph. The algorithm generates an N-dimensional real-valued
vector f = ( f1, . . . , fl , fl+1, . . . , fN ), which are the label
predictions. It is assumed that fi should be close to the given
label yi in the labeled nodes, while fi should also be close to
f j when there is an edge linking xi and x j or A(i, j) is large.
The corresponding optimization problem is to minimize the
following regularized quadratic function:

min
{ fi }N

i=1

N∑

i, j=1

A(i, j)( fi − f j )
2 + λ

N∑

i=1

( fi − yi)
2 (1)

where λ is a positive number and yl+1 = . . . = yN = 0 for
the unlabeled nodes. The first term refers to the loss function
penalty for the smoothness of { fi }N

i=1 and the second term
refers to a penalty for the inconsistency with given labels. In
a matrix form, (1) can be rewritten as follows:

min
f

fT Lf + λ||f − y||22 (2)

where L is the graph Laplacian matrix [21] defined by
L = D − A. Here, D is a diagonal matrix with D(i, i) =∑N

j=1 A(i, j). In a multiclass problem, we replace f by F ∈
R

N×K if there are K possible classes, and minimize the
following objective function:

min
F

tr(FT LF) + λ||F − Y||22 (3)

where tr(·) represents the trace of a matrix and Y ∈ R
N×K is

defined by

Y(i, k) =
{

1 instance i belongs to the k class
0 otherwise.

(4)

In practice, arg max j F(i, j) can be used as the label assign-
ment for instance i . The closed form or analytical solution for
single-domain semisupervised learning (3) or (2) is given by

F = λ(λI + L)−1Y (5)

where I is the identity matrix.

B. Multiple Domains
Existing multidomain learning methods assume that the

information collected in different domains is for the same
set of instances, thus called multiview learning [10].
Blum and Mitchell [4] proposed to use the idea of cotrain-
ing for multiview learning. The algorithm is to maximize
the mutual agreement on two distinct views of unlabeled
data. Muslea et al. [24] further combined active learning in
the cotraining process and proposed robust semisupervised
learning algorithms. Kumar and Daume [18] applied the
idea of cotraining to multiview spectral clustering problems.
Christoudias et al. [9] presented a multiview learning approach
where a conditional entropy criterion is used to detect
view disagreement. Samples with view disagreement are
filtered before standard multiview learning methods are
applied.

Another interesting approach is to combine different
kernels corresponding to different views, thus improving
the learning performance. Tsuda et al. [33] proposed a
semisupervised framework to protein classification problem.
By adapting weighted combination of kernels, this approach
discards noisy or irrelevant data in the learning process.
Cai et al. [8] seeked an optimal linear combination of differ-
ent networks which approximates a ground-truth community
structure for multiplex networks. Zhu and Li [40] also took
a similar approach to combine different networks that share
a similar structure. Wang et al. [34] proposed a multigraph-
based semisupervised learning method to a video annotation
problem. The method assigns larger weights to relevant graphs
and smaller weights to irrelevant graphs. Karasuyama and
Mamitsuka [19] proposed a sparse multiple graph integra-
tion (SMGI) method to control the sparsity of the weights
for the combination of multiple graphs. These two methods
have shown an improvement in a classification performance.
Wang et al. [36] imposed a low-rank constraint to each
view with a mutual structural consensus constraint within the
multiview spectral clustering framework. On the other hand,
subspace learning is employed to obtain a common latent sub-
space shared by multiple views. Diethe et al. [13] generalized
Fisher’s discriminant analysis to explore the latent subspace
spanned by multiview data. Chen et al. [11] developed a
statistical framework that learns a predictive subspace shared
by multiple views.

All the above-mentioned methods assume that different
domains contain the same set of instances. In addition, one
instance in a domain is not considered to be linked with
other instances in a different domain, i.e., no cross linking
of instances in different domains. Recently, more and more
attention is paid to solve this issue. Following an unsupervised
transfer learning approach [27], Cheng et al. [12] studied
the problem of unsupervised multiple heterogeneous graphs
learning where an instance can be linked to other instances
in several domains. According to the clustering consensus in
multiple graphs, coregularized graph clustering methods are
designed to enhance a graph clustering performance. With
a similar strategy, Ni et al. [26] proposed a framework that
clusters multiple domain-specific networks sharing underlying
clustering structures based on the domain similarity. They
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model domain similarity as a main network with each node
being a domain-specific network and formulate a two-phase
regularized optimization problem. Other approaches took more
advantage of the cross-domain relation. Sun et al. [29] studied
the problem of classification in heterogeneous information
networks. A probabilistic approach was proposed to learn the
importance of a different metapath (cross-domain relation) as
well as output the classification results that are consistent with
the user guidance. Liu et al. [23] incorporated prior knowl-
edge on cross-domain relation networks into multinetwork
clustering by leveraging the duality between single network
clustering and inferring cross-network cluster alignment.

III. PROPOSED METHOD: MULTIDOMAIN CLASSIFICATION

WITH DOMAIN SELECTION

We develop a new semisupervised learning method for mul-
tiple domains, called MCS, which can overcome the problems
in the existing multidomain learning methods, i.e., we can
further consider the following situations: 1) different domains
can contain different sets of instances; 2) an instance in a
domain can be linked with several instances in the other
domain; and 3) in particular, with respect to the focused/target
domain, MCS is automatically able to distinguish its irrelevant
and relevant domains for accurate integration of multiple data
sources.

Similarly, defined as (1)–(3), suppose there are M
domains represented as a graph Gm = (Vm, Em , Am) with
m = 1, . . . , M . Here, Vm contains a set of instances
{xm1, xm2, . . . ., xmNm

} and Em refers to the links among the
instances. Gm can be governed by the affinity or associa-
tion matrix Am ∈ R

Nm×Nm between instances. In addition,
we denote cross-domain relations between the mth domain and
the m′th domain (m �= m′) by an Nm × Nm′ matrix: Sm,m′ .
The (mi , m′

j )th entry or element of Sm,m′ refers to the con-
nection between the mi th instance in the mth domain and
the m′

i th instance in the m′th domain. Here, we assume that
this connection is also reciprocal, i.e., ST

m,m′ = Sm′,m and
T denotes the transpose of a matrix. The learning prob-
lem is that given the mth domain and its labeled instances
(i.e., the mth domain is the focused/target domain), we would
like to determine the other unlabeled instances of the mth
domain by using the domain information {Am′ }M

m′=1 and cross-
domain relations {Sm,m′ }M

m′=1,m′ �=m . Here, we consider the mth
domain to be our target domain, and certainly, we can also
choose other domain as the target domain depending on the
problem.

To incorporate the cross-domain relations, we introduce a
loss function to regularize the cross-domain structure. This
loss function is designed to penalize classification assignment
inconsistency with the given cross-domain relationships. For
an instance label vector f in the mth domain, Sm′,mf rep-
resents the label estimation of the corresponding instances
in the m′th domain. y = (y1, . . . , yNm ), which yi is set
to be zero for any unlabeled instance-i in the mth domain.
When the two instances in the m′th domain are similar,
their transferred label information in Sm′,m f should be close,
i.e.,

∑
i, j Am′(i, j)([Sm′,mf]i −[Sm′,m f] j )

2 should be small or

fT Lm′,mf should be small. Here,

Lm′,m = DSm,m′ Am′ Sm′,m − Sm,m′Am′Sm′,m

||DSm,m′ Am′Sm′,m − Sm,m′Am′Sm′,m ||F

where DSm,m′ Am′Sm′,m is the diagonal matrix with diagonal
entries being the row sum of Sm,m′Am′Sm′,m and || ∗ ||F is
the Frobenious norm of a matrix. In the following discussion,
we consider such a scaled Laplacian matrix.

Similar to (2), now we can define the objective function
of the proposed model with the mth domain as the focused
domain

min
f,w

fT Lmf +
M∑

m′=1,m′ �=m

wm′ fT Lm′,mf + λ‖f − y‖2
2 + γ ||w||22

(6)

where f is an Nm -by-1 vector and w = [w1, w2, . . . , wM ]
(without wm in the vector) is an (M − 1)-by-1 vector with

M∑

m′=1,m′ �=m

wm′ = 1, wm′ ≥ 0. (7)

Also, λ and γ are two positive numbers to balance the terms
‖f − y‖2

2 and ||w||22, respectively, in the objective function.
The first term of the objective function refers to instance
label estimation vector partition in the mth domain, which
is the focused domain here. The weight w in the second
term is employed to check how the other domain informa-
tion contributes to the label estimation in the mth domain.
The third term of (6) refers to the given labeled and the
unlabeled information in the mth domain. The fourth term
of (6) is a regularization quantity to control the domain
selection in w. When a domain is useful for the domain
classification in (6), wm′ is large. Otherwise (e.g., when
a domain contains much noisy or irrelevant information),
the regularization term forces wm′ to be small (see Theorem 1).
Clearly, by optimizing (6) constrained to (7), MCS has the
advantages to consider domain selection and cross-domain
information among instances over the existing methods due
to the introduction of the domain weight vector w and cross-
domain relations Sm,m′ . In addition, the first and second
terms are also the smoothness or consistency requirement of
instances, which implies that the label of each node tends to be
the same as that of its neighbors in the all consistent domains.

Here, we should mention that f can be replaced by F in (3)
to deal with multiclass case and similar results can be achieved
in the following discussion.

A. Algorithm for MCS

Next, we show that MCS can be equivalently decomposed
into two subproblems, i.e., one domain-weighting subproblem
for domain weights and one instance-prediction subproblem
for instance label vector, which can be analytically solved,
respectively. Thus, to solve the optimization problem MCS
in (6) and (7), we efficiently minimize the objective function
with respect to f and w by alternatively solving the two
subproblems.
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Similar to the derivation of (5), by fixing w, we can obtain
the analytical solution of (6) for f as follows:

f = λ

⎛

⎝λI + Lm +
M∑

m′=1,m′ �=m

wm′Lm′,m

⎞

⎠
−1

y. (8)

We note that Laplacian matrices Lm and Lm′,m are positive
semidefinite, and λI+Lm +∑M

m′=1,m′ �=m wm′Lm′,m is positive
definite. The linear system solver in (8) can be performed
by using LU factorization. Clearly, (8) is the solution of
the traditional multidomain classification or semisupervised
learning for multiple domains (without the consideration of
the domain selection, i.e., with w fixed).

On the other hand, by fixing f , (6) and (7) for solving w
equivalently reduce to the following optimization problem:

min
w

vT w + γ ||w||22 (9)

s.t. wT 1 = 1, w ≥ 0

where v = [v1, . . . , vM ] (without vm in the vector) is an
(M − 1)-by-1 vector where its entry vm′ is given by fT Lm′,mf
and 1 is an association vector with all entry being 1. Without
loss of generality, we assume that the entries in v are sorted
in the increasing order, i.e., v1 ≤ v2 ≤ . . . ≤ vM .

Theorem 1: The optimal solution of the problem in (9) is
analytically given by

wm′ =
⎧
⎨

⎩

θ − vm′

2γ
m′ ≤ P

0 m′ > P
(10)

where

θ = 2γ + ∑P
i=1 vi

min{P, M − 1} (11)

and

P = arg max
m′ (θ − vm′ > 0). (12)

Proof: Equation (9) is a quadratic optimization problem
whose Lagrangian function is given by

L(w,β, θ) = vT w + γ wT w − βT w − θ(wT 1 − 1)

where β = [β1, . . . , βM ] ≥ 0 (without βm) and θ are the
Lagrangian multipliers. The optimal solution w∗ satisfies the
Karush–Kuhn–Tucker condition [7]

∂wL(w∗,β, θ) = v + 2γ w∗ − β − θ1 = 0 (13)

w∗ ≥ 0, w∗T 1 − 1 = 0 (14)

β ≥ 0 (15)

∀ 1 ≤ m′ ≤ M except m, w∗
m′βm′ = 0. (16)

From (13), wm′ can be computed as

wm′ = βm′ + θ − vm′

2γ
. (17)

There are three cases for consideration.

1) When θ−vm′ > 0, since βm′ ≥ 0, we get wm′ > 0. From
condition (16), we see w∗

m′βm′ = 0, which indicates
βm′ = 0 and, therefore, wm′ = (θ − vm′/2γ ).

Algorithm 1 Algorithm for MCS

Input: M graphs with {Am′ }M
m′=1, the focused/target domain

m and cross-domain relations {Sm′,m}M
m′=1,m′ �=m , label

vector y, number of class K , and input parameters λ,
γ .

Output: label estimation vector f and domain selection
weights w.

1. Initialize w;
2. Optimize f according to (8);
3. Optimize w according to (10);
4. Repeat Lines 2 and 3 until convergence

2) When θ − vm′ = 0, since w∗
m′βm′ = 0 and wm′ =

(βm′/2γ ), we have βm′ = 0 and wm′ = 0.
3) When θ−vm′ < 0, since wm′ ≥ 0, then we have βm′ > 0.

From w∗
m′βm′ = 0, we have wm′ = 0.

Therefore, since {vm′ }M
m′=1,m′ �=m is in the increasing order,

using the positive integer P = arg maxm′(θ − vm′ > 0),
the optimality conditions are summarized as follows:

wm′ =
⎧
⎨

⎩

θ − vm′

2γ
m′ ≤ P

0 m′ > P.
(18)

By using wT 1 = 0, θ can be computed by

θ = 2γ + ∑P
i=1 vi

min{P, M − 1} . (19)

The result follows.
We can see from (9) that w tends to have only one nonzero

entry with small γ , while all entries in w tend to be the same
with large γ . In between two extreme cases, we obtain sparse
solutions in which only some entries of w are nonzero.

Based on the two analytically solutions (8) for f and (10)
for w, the proposed computational procedure for MCS is
summarized in Algorithm 1.

For Line 2, since the graph Laplacian matrix is usually
sparse, the computational complexity of a linear system given
by (8) can be nearly O(E) [31], where E is the number of
nonzero entries in Lm + ∑M

m′=1,m′ �=m wm′Lm′,m . For Line 3,
each iteration of the loop takes O(M) computations to get
the maximal number P = arg maxm′(θ − vm′ > 0), and
thus, the computational complexity of the entire process is
O(M2). Therefore, the overall computational complexity of
our algorithm is nearly O(Iter(E + M2)) with Iter being the
number of iterations. In practice, since the graph Laplacian
matrix is sparse and M and Iter are usually small values
(M ≤ 30), it is expected that our algorithm can be computed
effectively and efficiently.

B. Domain Selection Properties

According to Theorem 1, a sparse solution can be obtained
for w, since wm′ refers to the weight of the relevancy of
the m′th domain to the mth domain in the learning process.
By using the results in Theorem 1, we know that the proposed
model can have a property that can perform domain selection.
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On the other hand, by the calculation of w by (18), wi −
w j = (vi − v j )/2γ indicating that wi and w j are close once
vi and v j are close. Moreover, (vi − v j )/2γ can be further
written as

(vi − v j )

2γ
= fT Li,m f − fT L j,mf

2γ
= 〈Li,m − L j,m, fT f〉F

2γ
.

Thus, when Li,m and L j,m are similar to each other in terms
of 〈Li,m −L j,m, fT f〉F ≈ 0, then wi−w j ≈ 0. Furthermore, for
the difference between wi and w j , we can derive the following
inequality:

(wi − w j )
2 =

(
〈Li,m − L j,m, fT f〉F

2γ

)2

≤ 1

4γ 2 ||Li,m − L j,m ||2F ||fT f ||2F
= 1

2γ 2 (1 − 〈Li,m , L j,m〉)||f ||42.
For ||f ||2, we have

||f ||2 ≤ λ||
⎛

⎝λI + Lm +
M∑

m′=1,m′ �=m

wm′Lm′,m

⎞

⎠
−1

||2||y||2.

Since λI+Lm +∑M
m′=1,m′ �=m wm′Lm′,m is positive definite and

||L||22 is equal to the maximum eigenvalue of L, ||(λI + Lm +∑M
m′=1,m′ �=m wm′Lm′,m)−1||22 ≤ 1/λ. Thus, we have ||f ||2 ≤√
λ||y||2. Then, we can get

|wi − w j | ≤ λ||y||22√
2γ

√
1 − 〈Li,m , L j,m〉F . (20)

This indicates that two weights wi and w j for which
graph Laplacian matrices are highly correlated in terms of
〈Li,m , L j,m〉F have similar values. We can also see that |wi −
w j | will tend to 0 as γ increases by the inequality (20). These
results show that our approach provides grouping information
for a number of different domains.

IV. EXPERIMENTAL RESULTS

In this section, we mainly compare our algorithm with six
methods mentioned in Section II, which all have the similar
problem setting as that of our approach. The description of
each method will be discussed in the following with further
performance discussion as follows.

1) Single-Domain Semisupervised Classification
(SSC) [39]: As an illustration to examine whether
cross-domain relationship can help to enhance the
accuracy of classification result, SSC given by (3) will
be compared as a baseline single-domain semisupervised
learning method.

2) Optimal Multigraph (OMG) Semisupervised Learn-
ing [34]: This method aims to minimize the following
formulation:

min
f,α

M∑

m=1

αr
m

(
fT Lm f + λ||f − y||22

)

s.t. α1 = 1 (21)

where r ≥ 1. The optimization is done by updat-
ing f and α alteratively. Here, r is chosen man-
ually. When r tends to be infinity, α = 1/M
will be an optimal value. On the other hand, α =
ekmin if we decrease r to 1. However, the weights
cannot be exactly 0 except for the case r = 1.
This means that OMG always gives nonzero weights
to even noisy graphs, which will cause performance
deterioration. In practice, αm is also very sensitive to
the setting of r , which causes the performance highly
unstable and easily affected by noise. The computational
time complexity is O(Iter×E) with E being the number
of nonzero entries in

∑M
m αr

mLm .
3) SMGI [19]: The formulation is given by the following

optimization problem:

min
f,μ

M∑

m=1

μmfT Lm f + λ1||f − y||22 + λ2||μ||22
s.t. μ1 = 1, μ ≥ 0 (22)

where λ1 and λ2 are positive constants and μ =
{μ1, . . . , μM }. The first term of the objective function
penalizes the smoothness of the score f on all M graphs
(represent different views on the same set of instances).
The optimization is also done by updating f and μ alter-
natively. The time complexity is O(Iter(E + M2)) with
E being the number of nonzero entries in

∑M
m μmLm .

Both OMG and SMGI have sparse weighting coeffi-
cients, which automatically select important graphs and
eliminates irrelevant graphs. However, instead of general
multidomain learning, both methods are designed for
only multiview learning, which aim to find a global
classification results for all view of data. Therefore,
“focused/target domain” is not necessarily involved in
these methods and the classification will tend to smooth
the similar graphs occupied in number instead of graphs
we are interested in. However, we still put them into
comparison as multiview baseline methods to illustrate
the important role of domain selection in improving
classification accuracy.

4) Coregularized Multidomain Graph Clustering (CGC)
With Focused Domain [12]: The CGC method was orig-
inally designed to handle unsurprised multidomain learn-
ing problem with sparse weighting properties. It focuses
on only one interested domain each time to improve the
clustering accuracy. Therefore, it is worthy to make the
comparison with our method. The formulation is defined
as follows:

min
Hm ,μ

||Am − HmHT
m ||2F + λ1||Hm − y||22 + λ2||μ||22

+
M∑

m′=1,m′ �=m

μm′ ||Sm,m′Hm′(Sm,m′ Hm′)T −HmHT
m |||2F

s.t. Hm ≥ 0, μ ≥ 0, μ1 = 1 (23)

where m is the focused domain. For m′ = 1 . . . M , Hm′
is calculate from single-domain clustering by nonneg-
ative matrix factorization (NMF) approach, while the
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whole optimization is also reached by the NMF methods.
The time complexity of CGC is O(Iter(N3

max+N2
max K )),

where Nmax = maxm{Nm }.
5) Multinetwork Clustering via Cross-Domain Cluster

Alignment (MCA) [23]: Based on the duality between
single network clustering and inferring cross-network
cluster alignment, MCA incorporated prior knowledge
on cross-domain relationships Sm′,m into multinetwork
clustering. The optimization problem is as follows:

min
Hm≥0,Wm′,m≥0

∑

m′ �=m

||Sm′,m − Hm′Wm′,mHm ||2F

+
∑

m

μmTr(HT
mLmHm)

+
∑

m′ �=m

λm′m ||Wm′,m ||1

s.t. ∀m, HT
mHm = I (24)

where Wm′,m is used to represent the cross-domain clus-
ter alignment matrix between domain m′ and domain m.
The time complexity for MCA is O(Iter(N2

max K +
M Nmax K 2)). Although this method is not originally
designed for semisupervised learning, it is worthy to
make the comparison as a multidomain baseline.

6) Meta-Path Selection With User-Guided Network Clus-
tering (PSC) [29]: PSC is proposed a probabilistic
approach to learn the weight for metapath consistent
with the user guidance, and generates clusters under
the learned weights of metapaths, which optimizes the
following function iteratively:

max
μ,θik ,βkj,m′

∑

i

⎛

⎝
∑

m′

⎛

⎝
∑

j

μm′Sm′,m(i, j)log
∑

k

θikβkj,m′

+ log�(μm′ nim′ + Nm′ )

−
∑

j

log�(μm′ Sm′,m(i, j) + 1)

⎞

⎠

+
∑

k

1{i∈Lk }λlogθik

)
(25)

where θik and βkj,m′ refer to the possibility of instance
xmi and xm′

j
belonging to the kth cluster, and Lk

denotes the labeled samples’ set for cluster k and
nim′ = ∑

j Sm′,m(i, j). The alternative optimization of
PSC contains an inner loop of an EM-algorithm and
another inner loop of a gradient descent algorithm. The
total time complexity is O(Iter(Iter1(K

∑
m′ |Em′ |) +

Iter2
∑

m′ |Em′ |)), where Iter, Iter1 and Iter2, is the
number of iterations for outer loop, EM inner loop, and
gradient descent inner loop, and |Em′ | is the number of
nonzero entries in Sm′,m .

In the following experiments, the parameters of each algorithm
are tuned for optimal performance of all methods, by either
using a fivefold cross validation or following the parameter
strategy in the original papers.

Fig. 2. Four synthetic data sets. (a) Data set A: N = 300.
(b) Data set B: N = 500. (c) Data set C: N = 900. (d) Data set D: N = 1100.
Data sets A, B, and C are for two-class cases where Data sets B and C have
1-D and 2-D manifold structures embedded in the 3-D space, respectively.
Data set D is for a four-class case with 1-D manifold.

A. Evaluation Metrics

In the following sections, we consider two metrics to evalu-
ate the classification result. The first one is Rand index (RI) to
measure the similarity between the classification results with
the ground truth, which is defined as follows:

RI = TP + TN

TP + TN + FP + FN

where “TP” refers to true positive case that assigns vertices
of the same group into the same cluster, “TN” refers to true
negative case that assigns vertices of different clusters into
different clusters, “FP” refers to false positive case that assigns
vertices of different clusters into the same cluster, and “FN”
refers to false negative case that assigns vertices of the same
group into different clusters.

The second one is Accuracy (Acc), which is defined as the
degree of right classification of a model over all examples

Acc =
∑N

i χ( f (i) = y(i))

N

where χ(·) is a function having the value 1 when the predicted
class label f (i) equals to the true class label y(i) and,
otherwise, having the value 0.

B. Examples of Multiview Learning

1) Synthetic Graph Generation: In this section, we test our
algorithm with the four existing methods listed earlier on four
different data sets varying from different sizes and structures,
shown in Fig. 2, including Data sets B and C having 1-D or
2-D manifold structure embedded in the 3-D space and Data
set D for a multiclass case.
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TABLE I

BASIC NETWORK STATISTICS FOR FOUR SYNTHETIC DATA SETS (EACH
DATA SET CONTAINS 30 NETWORKS)

We generated 10 relevant graphs in which only a small part
of nodes have edges to their neighbors using the k nearest
neighbor graph (k-NN graph) as follows:

Ai, j =
⎧
⎨

⎩
exp

(
−d(xi , x j )

2σ 2

)
, i ∈ N j or j ∈ Ni

0 otherwise.

where N j indicates the index set of xi values’ k nearest
neighbor. d(xi , x j ) indicates a distance metric function and
σ is a positive constant parameter.

First, we randomly selected 10 center nodes from the entire
data set, and picked up k nearest neighbor data points for
each of those center nodes as small subsets of data points.
After that, k-NN graphs are created using each small subset of
data points. Here, k is randomly chosen from {20, 21, ..., 30}.
In this case, one single graph only provides partial information
of graph structures, and these 10 different graphs should be
integrated well to estimate the original graph and achieve a
good performance. Here, σ is set as the mean of all data point
pair distances.

For those irrelevant graphs, we also created two types
of data to evaluate graph selection ability of each method.
The first type is by reordering the index order of {xi }n

i=1.
The second type is constructed by randomly generating the
element of Ai, j from uniform distribution in [0, 1]. For each
type, graphs are generated 10 times. Thus, we have total
M = 30 graphs, including 10 relevant graphs and 20 irrelevant
graphs. Without loss of generality, let us set the first 10 graphs
to be relevant and the rest 20 graphs to be irrelevant. In this
case, one single graph cannot provide complete information of
graph structures, and integrating multiple graphs properly is
the key to achieve a good performance. Here, all the networks
are over the same set of instances, and thus, Sm,m′ = I for all
m and m′ values.

Basic network statistics, including average weighted degree,
maximal weighted degree, and average clustering coefficient,
for four synthetic data sets are listed in Table I, where
clustering coefficient [25] is the measure of the extent to which
one vertex’s neighbors are also neighbors of each other. Due
to space limitation, we only provide the network statistic range
of each data set. Here, the ratio of the number of labeled data
points l to the number of entire data points n is set at four
different levels, i.e., 10%, 15%, 20%, and 25%.

2) Numerical Comparison: As we can see in Table II,
all the six multiview/domain-based methods outperform the
single-domain methods SSC, indicating that the cross-domain
relationships can indeed play a role in enhancing the accuracy
of the clustering result. Among all the methods, MCS can
give higher RI/Acc value for almost all the four data sets under

different label rates compared with the other baselines (except
in a few cases with low label rate, PSC reaches higher value).

According to the previous discussion, the obtained optimal
weight for each domain highly depends on the initial weights,
which may result in a clustering error, while the involvement
of “focused domain” in MCS will reduce the possibility
of wrongly assigning weights to irrelevant domains. Here,
we should notice that, although “focused domain” is intro-
duced in CGC, the performance of CGC is not satisfactory.
One possible reason is that the computed solutions of CGC
are sensitive to initial guess of the input parameters due to the
computational procedure of NMF in each iteration. In addition,
the global optimal solution of CGC is not guaranteed because
of its nonconvex optimization procedure. This instability is
also the main reason why CGC performs even worse than
OMG and SMGI under high label rate. As an illustration of
stability, standard derivation (std) for 100 trials is also shown
in Table II. For all the methods, std decreases as the label
rate increases. The std for MCS is much lower than that
of the other methods in nearly all cases. In contrast, the std
for CGC is much higher than that of the other methods as
discussed earlier, which illustrates the instability of CGC.
We also notice that the performance of MCA is poorer
than that of the other multiview/domain baselines in most
cases. We remark that MCA is originally designed as an
unsupervised multidomain method without domain selection
in which many irrelevant domains are used and, therefore, its
performance can be very bad. In this section, each value is
computed on average in 100 trials.

Note that the first 10 domains are relevant to the target
domain, while the rest 20 domains are irrelevant. We cal-
culated the average optimal weight of each domain for the
“domain-selection" methods (OMG, SMGI, CGC, PSC,
and MCS) with different label rates in 100 trials based on
Data set A. We emphasize that only MCS correctly assigns
positive weight (an average of 0.1111) to each relevant domain
and 0 to irrelevant ones in each trial of all experiments. For
other method, such as CGC, positive weights (the average
value is 0.0786) are given to each relevant domain, while
weights (an average of 0.0146) are given to each irrelevant one,
resulting in the poor classification performance in Table II.
The instability of CGC also results in wrongly assigning
weights to each domain even for the data with a high label rate.
In our experiments, we should mention that although OMG
and SMGI do not handle “focused domain,” optimal weight
can be more correctly assigned to relevant graphs as the label
rate increases, indicating that the label information can help
to distinguish relevant or irrelevant domains.

C. Examples of Multidomain Learning

1) Synthetic Graphs’ Generation: In this section, we per-
formed the evaluation using the similar setting shown in Fig. 2,
where each of the 30 graphs corresponds to data sets with
similar structures but different sizes. Taking Data set A as
an example, the data sets of different sizes are constructed,
as shown in Fig. 3.
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TABLE II

CLUSTERING PERFORMANCES (RI/ACCURACY) AND STANDARD DERIVATION (STD) FOR DIFFERENT BASELINES. EACH NUMBER IS CALCULATED IN
AVERAGE BY TESTING 100 TRIALS ACCORDING TO EACH EXPERIMENTAL SETTING

Fig. 3. Data sets with similar structures but different sizes. Left: N = 300.
Middle: N = 450. Right: N = 600.

In this way, interrelationship Si, j between any two graphs
Ai and A j can be constructed. For relevant graphs, we gener-
ated Si, j by connecting corresponding class in different graphs.
For irrelevant graphs, Si, j are randomly constructed from
uniform distribution in [0, 1]. We still kept the first 10 graphs
as relevant graphs, shuffled the index order of {xi }n

i=1 for the
next 10 graphs and constructed the last 10 graphs by randomly
generating the element of Si, j from uniform distribution in
[0, 1]. Basic network statistics are the same as in Table I. The
label rate is also set at four different levels: 10%, 15%, 20%,
and 25%.

2) Numerical Comparison: Since multiview methods OMG
and SMGI cannot be applied to the domains over different sets
of instances with the cross-domain relation, only multidomain
methods (MCA, PSC, and CGC) are used as the baselines

for the comparison in this section. However, the single-domain
method SSC can still be performed on the focused domain.

As we can see in Table III, all the four multidomain
learning methods outperform the single-domain method SSC,
indicating the role of cross-domain relationship in enhancing
the accuracy of clustering result. We note that the performance
of PSC and MCS is better than that of CGC and MCA. The
accuracy of PSC and MCS is enhanced significantly from
the supervision learning (as the label rate increases). We see
that the performance of MCS is better than that of PSC
in all cases. This is because the framework of PSC focuses
on “metapath” information (cross-domain relationship Sm′,m)
without domain information (Am′).

The optimal weights for each domain of different methods
are also calculated. We emphasize that only MCS correctly
assigns positive weights (the average value is 0.1111) to
relevant graphs (or domains) and 0 to irrelevant ones in each
trial of all experiments. For other methods, taking CGC as
illustration, positive weights (the average value is 0.1052) are
given to each relevant domain, while weights (the average
value is 0.0146) are given to irrelevant domains, which results
in the poor performance in Table III. Here, we should mention
that the computational cost for MCS is much less than MCA,
PSC, and CGC in all tests.

Overall, these results indicate that MCS could eliminate
irrelevant graphs or domains efficiently, and MCS achieves
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TABLE III

CLUSTERING PERFORMANCES (RI/ACCURACY) AND STANDARD DERIVATION (STD) FOR DIFFERENT MULTIDOMAIN LEARNING METHODS. EACH
NUMBER IS CALCULATED ON AVERAGE BY TESTING 100 TRIALS ACCORDING TO EACH EXPERIMENTAL SETTING

the highest predictive performance among all methods under
the setting of synthetic data.

D. Example of 20-Newsgroup Data

1) Data Generation: In this paper, we further evaluated
the effectiveness of MCS using 20-Newsgroup data sets
(document × term frequency),1 which is a collection of
approximately 20 000 newsgroup documents across 20 differ-
ent topics covering computer science, talk, religion, and so on.
All frequencies are weighted with the tf-idf scheme defined
in [14], which is a numerical statistic intending to reflect the
importance of a word to a document in a collection.

We used 12 newsgroups of three topics, including Comp,
Rec, and Talk listed in Table IV. Each topic corresponds
to three underlying clustering structure with four clusters
(newsgroups). In this paper, we generated 10 domains for
each topic, which contain 200 randomly sampled documents
from the four newsgroups (50 documents from each group).
As for similarity measurement, cosine similarity for pairwise
documents is calculated (top 10% largest entries are kept,
while the rest are set to be 0) to construct the affinity
matrix Ai (1 ≤ i ≤ 30). As a result, we have 30 domains
(Comp Domain: G1–G10, Rec Domain: G11–G20, and Talk
Domain: G21–G30) corresponding to three different topics.

1http://qwone.com/ jason/20Newsgroups/

TABLE IV

30 DOMAINS FROM 12 NEWSGROUPS IN THREE TOPICS

TABLE V

BASIC NETWORK STATISTICS FOR 20-NEWSGROUP DATA SET

Basic network statistics for 20-Newsgroup data set are listed
in Table V. Due to space limitation, we only provide the
network statistic range for Comp Domain, Rec Domain, and
Talk Domain.

The interrelation or cross-domain relation Si, j (1 ≤ i, j ≤
30) between any two domains Gi and G j is constructed as
follows. For any two domains generated from the same topics,
document in one domain is randomly mapped to documents
with the same label (e.g., rec.autos) in another domain. For any
two domains generated from different topics, the documents
are randomly mapped together without considering label. The
label rate is still set at four different levels 10%, 15%, 20%,
and 25%.
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Fig. 4. Optimal weights for different domains. Each entry is mean value over 100 trials. The focused domain is from left to right: G1, G11, and G21.

TABLE VI

AVERAGE PERFORMANCES FOR FIVE METHODS WITH DIFFERENT

FOCUSED DOMAINS AND LABEL RATES

2) Numerical Results: In this section, we also only com-
pared our method with multidomain baselines (MCA, PSC,
and CGC) together with the single-domain method SSC.

Table VI shows the average accuracy over 100 trials for
each case. As shown in Table VI, MCS achieves a better
performance compared with other methods when varying both
focused domain and label rate. MCS is more efficient and
can benefit significantly from the supervised information as
the label rate increases. In Fig. 4, the optimal weight for each
domain is also reported. It can be seen that MCS is able
to utilize the relevant domains while filtering the irrelevant
domains to dramatically improve the accuracy, which validates
the effectiveness of our method.

E. Example of Real-World Patient Data

1) Data Generation: In this section, we studied a real-world
application: cancer subtype classification problem. We com-
pared two lung cancer subtypes, i.e., lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC), among
multiple data types, including gene expression, microRNA
expression, and DNA methylation data from TCGA. We down-
loaded level-3 data for each data type and platform. The
detailed information of samples is described in Table VII.
As normal samples of LUAD and LUSC are both from the

TABLE VII

TWO LUNG CANCER SUBTYPES, LUAD AND LUSC, AMONG MULTIPLE

DATA TYPES, INCLUDING GENE EXPRESSION, MICRORNA EXPRES-
SION, AND DNA METHYLATION DATA FROM TCGA

TABLE VIII

FIVE DIFFERENT DOMAINS REPRESENTING FIVE DIFFERENT PLATFORMS

TABLE IX

BASIC NETWORK STATISTICS FOR FIVE DOMAINS IN PATIENT DATA SET

same tissue lung, we combined them together as normal
samples and then filtered out those features with missing value
along all samples in the same platform. In this way, we formed
five different domains representing different platforms over
different sets of samples, as shown in Table VIII. Except G2
which only contains two subtypes of cancer, all the other
domains contain both normal and two subtypes.

As for similarity measurement for pairwise samples, we uti-
lized the tool called similarity network fusion from [35] where
Gaussian kernel is used to measure the similarity between
each pair of samples Ai (1 ≤ i ≤ 5) which is better than
Pearson correlation coefficient, as shown in Fig. 5. Basic
network statistics for five domains in Patient data set are listed
in Table IX.
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Fig. 5. Similarity matrices for different domains using Gaussian kernel. From left to right: G1, G2, G3, G4, and G5.

TABLE X

AVERAGE PERFORMANCES FOR FIVE METHODS WITH DIFFERENT

FOCUSED DOMAINS AND LABEL RATES

In this way, interrelationship or cross-domain relation Si, j

between any two graphs Ai and A j is constructed by linking
the same sample in different domains.

2) Numerical Results: In the experiments, we compare
the proposed method MCS with the multidomain baselines
(MCA, PSC, and CGC) and SSC. The focused domain is
chosen from G1 to G5, and the label rate in this section is still
set as 10%, 15%, 20%, and 25%. Table X shows the average
RI for all five methods, taken over 100 trials.

Here, we could see that MCS has a significantly higher
RI/Acc rate than those of SSC, CGC, MCA, and PSC,
indicating that MCS has nice property of graph selection
and benefits from cross-domain information in the real-world
application.

Fig. 6. Computational time comparison among OMG, SMGI, CGC, MCA,
PSC, and MCS based on synthetic data sets.

Fig. 7. Sensitivity of λ based on Data set A with label rate = 25%. Each
entry is mean value over 100 trials in terms of RI.

F. Scalability and Stability Analysis

In this section, we first analyze the scalability for each
method by comparing the computational cost with data size
increased. Then, we will further analyze the stability of the
proposed MCS method by studying the parameters’ sensitivity
of λ and γ , which also helps us to understand the impact of
supervision and domain selection, respectively.

1) Scalability Analysis: Although the computational com-
plexity is given in the first part of this section. We further
compared the computation cost for each method as the size
of domain increases in Fig. 6 based on synthetic Data set
A. According to Fig. 6, MCS, OMG, and SMGI reach the
lowest computational cost, followed by PSC and MCA, while
the computational cost of CGC is the highest among all the
baselines. This is also the case when applied to other data sets
in Sections IV-A–IV-D.

2) Stability Analysis: We first study the performance of
MCS with a different setting of λ. According to Fig. 7,
the performance of MCS gets better with the increase of λ and
tends to be stable after some value (in this case, λ = 3). Thus,
it is easy for user to choose a suitable λ in their implements.
We should mention that the role of semisupervision is not
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Fig. 8. Weights for different domains. Top: label Rate = 10%. Bottom: label
Rate = 0%. Each entry is mean value over 100 trials. The focused domain is
the first domain.

Fig. 9. Sensitivity of γ based on Data set A with label rate = 25%. Each
entry is mean value over 100 trials in terms of RI.

Fig. 10. Weights for different domains. Top: γ = 0.1. Bottom: γ = 15.
Each entry is mean value over 100 trials.

only in guidance of clusters but also guidance in the domain
selection. Here, we show a case when λ = 0 (label rate = 0%)
in Fig. 8. Remark that the first 10 domains are relevant
domains, while the rest are irrelevant to the target domain.
In this sense, the lack of label information will result in the
error weighting, as shown in Fig. 8. This also explains the low
accuracy performance of MCS when λ is small.

We further study the influence with a different setting of γ .
As discussed in Section III-A, w have sparse positive entries
with small γ , while all entries in w will tend to the same
value with large γ . In between two extremes, we obtain sparse
solutions.

In Fig. 9, we evaluate the performance of MCS with γ
within the range of [0, 15]. It is easy to see that the optimal
γ locates within [1, 3], which reflects that the setting of γ
should not be either too small or too large. When γ is too
small, weights will be assigned to only a few domains, such
that no enough relevant domains will be integrated. However,
when γ is too large, weights will be averagely assigned to all
domains, such that irrelevant domains will be involved. Here,
we also show two extreme cases with γ = 0.1 and 15 for
illustration (see Fig. 10).

V. CONCLUSION

Integrating multiple data sources is an important problem in
data mining research. Robust and flexible approaches that can
incorporate multiple sources to enhance domain classification
performance are highly desirable. In this paper, we proposed
a new approach MCS for integrating multiple domains under
the semisupervised spectral clustering framework. MCS can
consider the cross-domain information and individual instance
sets of multiple domains, comparing with the traditional
methods. In particular, with the appealing properties of the
sparsity of domain weights, by which irrelevant domains can
be easily eliminated, MCS method is able to obtain optimal
graph partition performance for the focused domain. From the
computational viewpoint, we equivalently decompose MCS
into two simpler subproblems with two analytical solutions,
which can be efficiently solved iteratively. We also present the
efficient optimization algorithm in MCS, which allows the
clear interpretation of our formulation. Experimental results
have demonstrated that MCS has a superior domains’ selec-
tion ability as well as the highest prediction performance
among the state-of-the-art methods for integrating multiple
domains.
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